

Filière: SMP Semestre: S5 Session normale: Janvier 2015 Prof. H. Najib

EXAMEN DE PHYSIQUE QUANTIQUE <u>Durée</u>: 1 h 30

Aucun document n'est autorisé

<u>Barème</u>	Partie I (13 points)
	Dans cette partie, on ignore les variables orbitales.
	1) On donne l'Hamiltonien H décrivant un électron A, de moment cinétique de spin \vec{S}_a et de
	moment magnétique $\vec{\mu}_a$, plongé dans un champ magnétique homogène et uniforme \vec{B}_0 dirigé
	suivant l'axe Oz : $H = -\vec{\mu}_a.B_0\vec{k}$. On posera: $_0 = -\ _sB_0$ ($_s$: rapport gyromagnétique). Une base
	de son état de spin ξ_s est constituée par les états propres de la composante S_{az} de \vec{S}_a .
2	a- Ecrire la matrice représentant l'Hamiltonien H dans cette base.
1 1	 b- Quel est dans l'espace ξ_s l'état > normé le plus général de la particule A ? c- L'électron A étant dans l'état >, on mesure son énergie, quelles valeurs trouve-t-on et
	avec quelles probabilités ?
2 2	d- Montrer que la valeur moyenne $\langle S_{az} \rangle$ est une constante du mouvement. e- Déterminer les équations d'évolution des composantes $\langle S_{ax} \rangle$ et $\langle S_{ay} \rangle$ et en déduire que
	$<\vec{S}_a>$ décrit, autour de \vec{B}_0 , un mouvement de précession de Larmor.
	2) Soit $\vec{S} = \vec{S}_a + \vec{S}_b$ l'opérateur obtenu en composant le spin \vec{S}_a $\frac{1}{2} \times \frac{1}{2}$
	et celui S _b d'un électron B.
1	a- Déterminer les vecteurs propres constituant la base couplée. b- Exprimer ces vecteurs en fonction des éléments de la base $\frac{1}{2} \frac{1}{2} 1 0 0$
1	découplée ; on utilisera la Table ci-contre des coefficients de Clebsch-Gordan
	de Ciebsch-Gordan.
	3) Les deux électrons sont maintenant couplés par l'interaction : $H_S = a\vec{S}_a \vec{S}_b ; a \text{ est une constante réelle}$
3	$H_S = aS_aS_b$; a est une constante réelle Déterminer les valeurs propres de H_S exprimées dans la base
3	couplée et préciser leur degré de dégénérescence.
	Partie II (7 points)
	On considère un oscillateur harmonique de pulsation , constitué par une particule de masse m se déplaçant sur l'axe Ox. On le soumet à une perturbation quadratique d'Hamiltonien :
	$H_1 = \frac{\alpha}{4}\hbar\omega(a + a^+)^2$ 0 < << 1
	a et a ⁺ étant les opérateurs d'annihilation et de création.
	On notera $E_n^{(0)}$ et $ n\rangle$ les énergies et vecteurs propres de l'Hamiltonien non perturbé H_0 ; E_n et $ n\rangle$ ceux de l'Hamiltonien $H = H_0 + H_1$.
2	1) Chercher les valeurs exactes des énergies E _n des états stationnaires.
1	2) On applique la théorie des perturbations stationnaires : a- Montrer que seuls les éléments matriciels suivants sont non nuls :
1	$<$ m $ H_1 $ n > 0 pour m = n et m = n ± 2
	b- En déduire :
1	 i) la correction E_n⁽¹⁾ de l'énergie au premier ordre d'approximation; ii) la correction E_n⁽²⁾ d'ordre deux.
1 1	c- Comparer les énergies $E_{nc} = E_n^{(0)} + E_n^{(1)} + E_n^{(2)}$ au développement limité des valeurs exactes
	obtenues en 1).
1	d- Montrer que les états propres n> sont contaminés par les états n+2> et n-2> ; on donnera les états stationnaires n> jusqu'à l'ordre un d'approximation.