

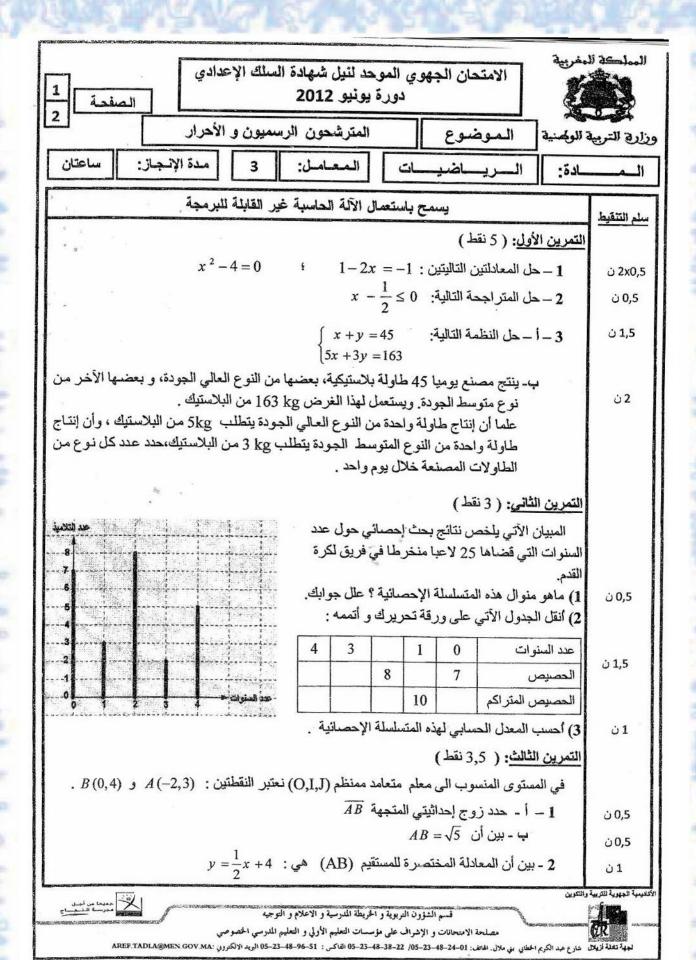
موقع الرياضيات و المعلوميات www.mathinfo.ift.fr

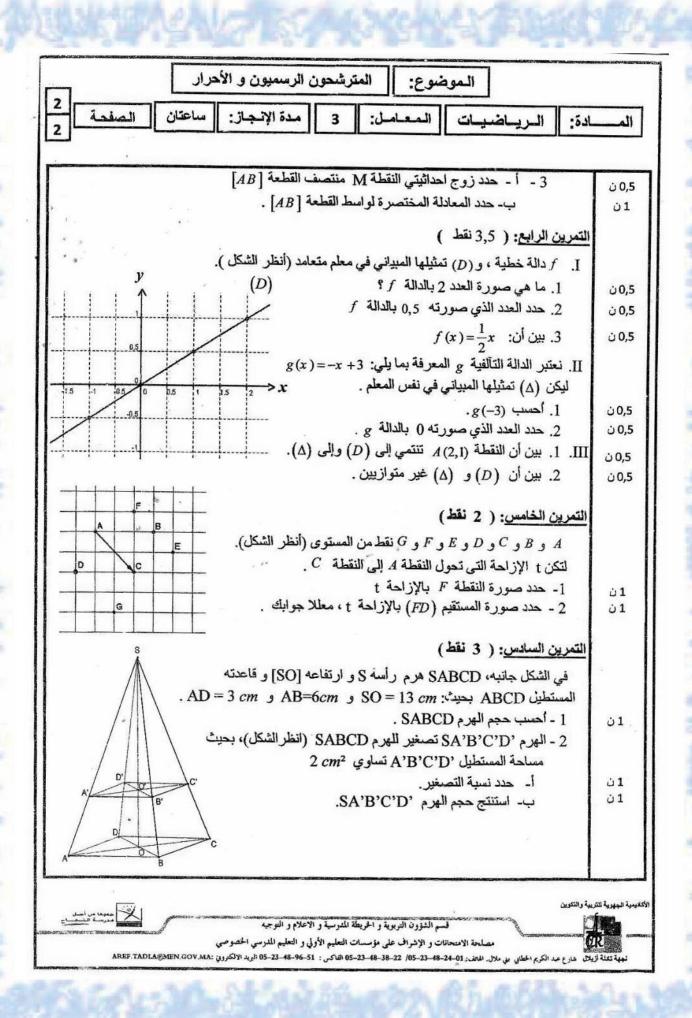
السنة الثالثة ثانوي إعدادي

تميحيح

الرمتحانات الجهوية

الرباضيات


ماي 2013


انجاز الأستان توفيق جابر

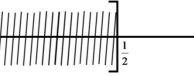
Merci de visitez le site web : www.9alami.com

الفهرس

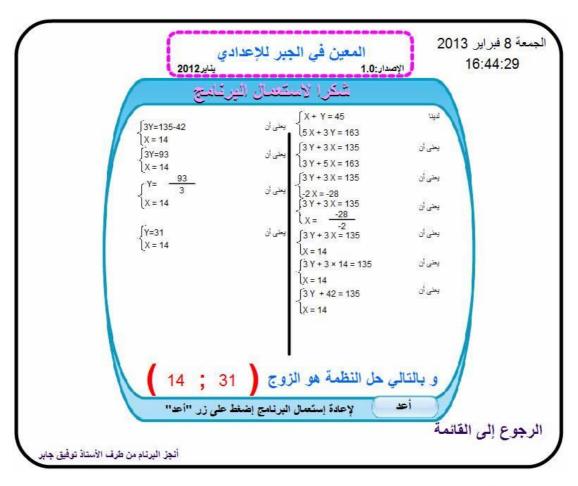
تفهرس
متحان تادلة ازيلال 2012
لتصحيح
متحان طنجة تطوان 2012
لتصحيح
متحان مكناس تافيلالت 2012
لتصحيح
متحان الدار البيضاء الكبرى 2012
لتصحيح
متحان فاس بولمان 2012
لتصحيح
متحان الجهة الشرقية 2012
لتصحيح
متحان الشاوية ورديغة 2012
لتصحيح
متحان دكالة عبدة 2012
لتصحيح
متحان سوس ماسة درعة 2012
لتصحيح

تصحيح الإمتحان الجهوي 2012 تادلة أزيلال

التمرين الأول:


$$1-2x = -1$$
 حل المعادلة $-2x = -1$ لدينا $-2x = -1$ يعني أن $-2x = -2$ يعني أن $x = \frac{-2}{-2}$ أن $x = 1$ يعني أن $x = 1$ يعني أن $x = 1$ و بالتالي حل المعادلة هو $x = 1$ و بالتالي حل المعادلة هو $x = 1$

$$x^2-4=0$$
 لدينا $x^2-4=0$ لدينا $x^2-4=0$ يعني أن $x^2=4$ يعني أن $x=\sqrt{4}$ يعني أن $x=\sqrt{4}$ يوني أن $x=-\sqrt{4}$ يوني أن $x=-2$ يوني أن $x=-2$ إلى المعادلة هما 2 و $x=-2$ و بالتالي حلي المعادلة هما 2 و $x=-2$


$$x - \frac{1}{2} \le 0$$
 لدينا -2 $x \le \frac{1}{2}$ أن $x \le \frac{1}{2}$

وبالتالي جميع الأعدد الأصغر من أو تساوي $\frac{1}{2}$ هي حلول للمتراجحة.

حلول المتراجحة

$$\begin{cases} x + y = 45 \\ 5x + 3y = 163 \end{cases}$$
 حل النظمة -3

ب- * تحديد المجهولين المناسبين:

عدد الطاولات البلاستيكية العالية الجودة. \dot{x}

y = 3عدد الطاولات البلاستيكية المتوسطة الجودة.

* صياغة النظمة:

$$\int x + y = 45$$

$$\int 5x + 3y = 163$$

🖈 حل النظمة:

حسب السؤال 3- أ- حل النظمة هو الزوج (14;31) .

* تأويل النتائج:

عدد الطاولات البلاستيكية العالية الجودة هو 14.

عدد الطاولات البلاستيكية المتوسطة الجودة هو 31.

التمرين الثاني:

1) نلاحظ حسب المبيان أن أكبر حصيص هو 8 الموافق للميزة 2.

إذن منوال المتسلسلة الإحصائية هو 2.

(2

4	3	2	1	0	عدد السنوات
5	2	8	3	7	الحصيص
25	20	18	10	7	الحصيص المتراكم

موقع الرياضيات و المعلوميات

*
$$\frac{0 \times 7 + 1 \times 3 + 2 \times 8 + 3 \times 2 + 4 \times 5}{25}$$
 لدينا (3
$$= \frac{0 + 3 + 16 + 6 + 20}{25} = \frac{45}{25} = 1.8$$
 إذن المعدل الحسابي للمتسلسلة الإحصائية هو 1.8.

التمرين الثالث:

$$y_B - y_A = 4 - 3 = 1$$
 و $x_B - x_A = 0 - (-2) = 2$ الناني:

 $AB = \sqrt{2^2 + 1^2} = \sqrt{4 + 1} = \sqrt{5}$ بالن زوج إحداثيتي المتجهة $AB = \sqrt{2^2 + 1^2} = \sqrt{4 + 1} = \sqrt{5}$ بعتبر (AB) بعتبر $y = mx + p$ بعتبر الميل $x = \sqrt{2}$ الميل $x = \sqrt{2}$ بعتبر الميل $x = \sqrt{2}$ الميل $x = \sqrt{2}$ بعتبر الأرتوب عند الأصل $x = \sqrt{2}$ بعتبر $x = \sqrt{2}$ بعتبر الميل $x = \sqrt{2}$ ععدلة مختصرة لواسط القطعة $x = \sqrt{2}$ بعنبر الميل واسط القطعة $x = \sqrt{2}$ ععدل المينقيم $x = \sqrt{2}$

$$AB$$
) لدينا واسط القطعة $\begin{bmatrix} AB \end{bmatrix}$ عمو دي على المستقيم $m imes m' = -1$ إذن $m imes m' = -1$

$$\frac{1}{2}$$
× $m' = -1$ يعني أن

m' = -2p'تحدید الأرتوب عند الأصل *

[AB]لدينا M نقطة من واسط القطعة

 $y_M = -2x_M + p'$ إذن

$$\frac{7}{2} = -2 \times (-1) + p$$
' يعني أن

$$p' = \frac{7}{2} - 2$$
 يعني أن

$$p' = \frac{3}{2}$$
ومنه

. $y = -2x + \frac{3}{2}$ هي AB هي التالي المعادلة المختصرة لواسط القطعة

التمرين الرابع:

$$f$$
 مسورة العدد f بالدالة f هي f

. العدد الذي صورته
$$f$$
 بالدالة f هو 1 .

$$\frac{f(2)}{2} = \frac{1}{2}$$
 دالة خطية و 3. دلينا 6. دالة

$$f(x) = \frac{1}{2}x$$
 إذن

$$g(-3) = -(-3) + 3 = 3 + 3 = 6$$
 .1 .II

$$g(x) = 0$$
د. لدينا 2

$$-x + 3 = 0$$
يعني أن

$$x=3$$
 يعني أن

و بالتالي العدد الذي صورته g بالدالة g هو g

$$f(2) = 1$$
 لاينا .1 .III.

$$(D)$$
نتمي إلى المستقيم $A(2;1)$

$$g(2)=1$$
 لدينا

$$(\Delta)$$
 تنتمي إلى المستقيم $A(2;1)$

و بالتالي النقطة
$$A(2;1)$$
تنتمي إلى المستقيمين $A(2;1)$

2. لدينا A تنتمي إلى المستقيمين (D) و (Δ) و النقطة O تنتمي إلى (D) (لأنه تمثيل مبياني لدالة خطية) و لا تنمى إلى (Δ) (لأنه تمثيل مبياني لدالة تألفية)

A النقطة (Δ) النقطة إذن المستقيمين (D) النقطة

و بالتالي المستقيمين (D)و (Δ) غير متوازيين.

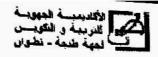
التمرين الخامس:

$$E$$
 صورة النقطة F بالإزاحة t هي النقطة T

$$E$$
 النقطة النقطة F بالإزاحة t هي النقطة -2

$$G$$
 و صورة النقطة D بالإزاحة t هي النقطة

.
$$(EG)$$
 المستقيم مي المستقيم D بالإزاحة t هي المستقيم


التمرين السادس:

$$\frac{1}{3} \times AB \times AD \times SO = \frac{1}{3} \times 6cm \times 3cm \times 13cm = 78cm^3$$
 لينا -1

$$78cm^3$$
 هي $SABCD$ إذن مساحة الهرم

موقع الرياضيات و المعلوميات

$$\frac{2cm^2}{AB\times AD} = \frac{2cm^2}{6cm\times 3cm} = \frac{2cm^2}{18cm^2} = \frac{1}{9}$$
ا- 1 -2
$$\sqrt{\frac{1}{9}} = \frac{1}{3}$$
اذن نسبة التصغير هي $\frac{1}{9} = \frac{1}{3}$ مي $\frac{1}{3} \times 78cm^3 = \frac{78}{27}cm^3 = \frac{26}{9}cm^3 = 2.89cm^3$ باذن مساحة الهرم' $\frac{1}{3} \times \frac{1}{3} \times \frac{1}{$

الامتحان الجهوي الموحد لنيل شهادة السلك الإعدادي دورة يونيو 2012 الموضوع

وزارة التربية الوطنية

0.5

1

1.5

ساعتان	مدة الإنجاز	
3	المعامل	مادة: الرياضيات

يسمح باستعمال الألة الحاسبة الغير قابلة للبرمجة

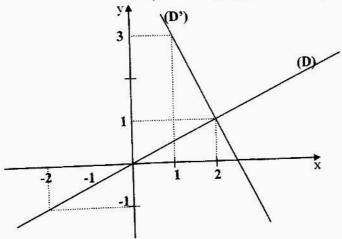
التمرين الأول: (5 نقط)

4x + 1 = 6x - 2 1 all 4x + 1 = 6x - 2

9 أ- هل العدد 1- حل للمتراجحة $5x \le -10$?

ب- حل المتراجحة $01-2 \, 5x$ ثم مثل الحلول على مستقيم مدرج.

$$\begin{cases} x + y = 130 \\ x + 2y = 180 \end{cases}$$
: (3)


ب- تحمل شاحنة 130 كيسا من الدقيق من صنفين.

يزن كل كيس من الصنف الأول 5kg و يزن كل كيس من الصنف الثاني 10kg .

حدد عدد الأكياس من كل صنف، إذا عامت أن الشاحنة تحمل بالضبط 900kg من الدقيق.

التمرين الثاني: (4 نقط)

(D') و (D) ، نعتبر المستقيمين و (D') في المستقيمين (D') و (D') في المستوى المنسوب إلى معلم متعامد ممنظم (D,I,J)بحيث (D) هو التمثيل المبياني لدالة خطية f (أنظر الشكل أسفله).

- $f(-2) \circ f(0)$ 1
- ب حدد العدد الذي صورته 1 بالدالة ٢
 - ج- حدد معامل الدالة f
- g(x) = -2x + 5 نعتبر الدالة التألفية g بحيث (2
 - ا- احسب (1) g و (2)
 - ب- بين أن (' D) هو التمثيل المبياني للدالة التألفية g
 - f(2) = g(2) نحقق مبیانیا ان (3

0.5

9

 $\frac{2}{2}$

الامتحسان الجهوي الموحد لنيل شهسادة السلك الإعدادي دورة يونيو 2012 مسسادة: الرياضيات

التمرين الثالث: (4 نقط)

1

0.5 0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

في المستوى منسوب إلى معلم متعامد ممنظم (O;I,J) ،نعتبر النقط: A(4,0) و B(2,4)

- AB أ- حدد إحداثيتي المتجهة \overline{AB} ثم احسب المسافة (1
 - -2 هو (AB) ب- بين أن ميل المستقيم
 - ج- بين أن المثلث OAB متساوي الساقين رأسه B
- $y = \frac{1}{2}x + 3$ هي (BC) أ- بين أن المعادلة المختصرة للمستقيم
 - (AB) عمودي على المستقيم (BC)
 - [AC] عدد زوج إحداثيتي النقطة E منتصف القطعة مدد زوج إحداثيتي النقطة القطعة القطع
 - E لتكن النقطة D مماثلة النقطة B بالنسبة للنقطة D
 - بين أن الرباعي ABCD مستطيل.

التمرين الرابع: (نقطتان)

يقدم الجدول التالي المدد الزمنية بالدقائق،التي يستغرقها 30 تلميذا لقطع المسافة الفاصلة بين سكناهم والإعدادية ذهابا وإيابا.

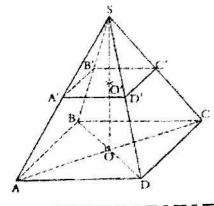
90	80	70	60	50	40	30	20	10	المدة
2	1	1	3	6	4	5	6	2	عدد التلاميذ

- 1) حدد منوال هذه المتسلسلة الإحصائية
 - 2) حدد المدة الزمنية المتوسطة .
- 3) ما هي النسبة المنوية للتلاميذ الذين يستغرقون أقل من 55 دقيقة لقطع هذه المسافة ؟

التمرين الخامس: (نقطتان)

ليكن ABCD معيناً و 1 الإزاحة التي تحول النقطة A إلى النقطة C. النقطة B هي صورة النقطة B بالإزاحة B

- ا حدد صورة الدائرة التي مركزها Aو شعاعها AB بالإزاحة A
 - [DE] بين أن النقطة C هي منتصف القطعة
 - B يين أن المثلث DBE قائم الزاوية في (3


التمرين السادس: (3 نقط)

 $80cm^2$ ومساحة قاعدته تساوي OS=15cm بحيث SABCD

- 1) احسب حجم الهرم SABCD
- 2) نعتبر النقطة O منتصف [SO].
- (SB) و (SA) و (SA) و ألك من على التوالي نقط تقاطع المستقيمات (SA)
- و (SC) و (SD) مع المستوى المار من O و الموازي للمستوى (SD).

الهرم 'SABCD هو تصغير للهرم SABCD (أنظر الشكل).

- ا. بين أن معامل التصغير هو $\frac{1}{2}$
- ب. بين أن حجم الهرم 'SA'B'C'D هو 50cm

. حلول المتراجحة

تصحيح الإمتحان الجهوي 2012 جهة طنجة تطوان

التمرين الأول:

$$4x+1=6x-2$$
 لدينا (1
 $4x-6x=-2-1$ يعني أن $-2x=-3$ يعني أن $x=\frac{-3}{-2}$ يعني أن

و بالتالي حل المعادلة هو
$$\frac{3}{2}$$
 .

$$5 \times (-1) = -5 \ge -10$$
 أ- لدينا $-1 \ge -10$ إذن $1 - 1 \ge -10$ ليس حل للمتراجحة. $5x \le 10$ ب- لدينا $x \le \frac{10}{5}$ أن $\frac{10}{5}$

 $x \le 2$ يعني أن

ي ي ل _ _ ... وبالتالي جميع الأعدد الأصغر من أو تساوي 2 هي حلول للمتراجحة.

-ا (3 الإثنين 28 يناير 2013 المعين في الجبر للإعدادي 18:26:54 الإصدار:1.0 ∫X=80 Y = 50 يعنى أن -Y = -50 (X + Y = 130)X + 50 = 130Y = 50يعني أن $\int X + 50 = 130$ ∫X=130-50 يعني أن و بالتالي حل النظمة هو الزوج | 50 ; 80 أعد لإعادة إستعمال البرنامج إضغط على زر "أعد" الرجوع إلى القائمة أنجز البرنام من طرف الأستاذ توفيق جابر

عدد أكياس الصنف الأول. = x

عدد أكياس الصنف الثاني. y

* صياغة النظمة:

النظمة:
$$x + y = 130$$
 $x + y = 130$ $x + 2y = 180$ $5x + 10y = 900$ خيني أن $x + 2y = 180$

🗶 حل النظمة:

حسب السؤال 3)أ- حل النظمة هو الزوج (80,50).

* تأويل النتائج:

عدد أكياس الصنف الأول هو 80.

عدد أكياس الصنف الثاني هو 50.

التمرين الثاني:

•
$$f(-2) = -1$$
 9 $f(0) = 1$ - 1 (1)

ب- العدد الذي صورته 1 بالدالة f هو 2.

.
$$\frac{1}{2}$$
 هو f هو الدالة f هو ج- لدينا

$$g(1) = -2 \times 1 + 5 = -2 + 5 = 3$$
 -1 (2)

$$g(2) = -2 \times 2 + 5 = -4 + 5 = 1$$

$$g(2) = 1$$
 و $g(1) = 3$ ب- لدينا

إذن التمثيل المبياني للدالة و يمر من النقطة ذات الإحداثيات (1:3) و النقطة ذات

الإحداثيات (2:1)

وبما أن (D') يمر من نفس النقطتين

. g فإن (D') هو التمثيل المبياني للدالة

2) بما أن التمثيل المبياني للدالة f و التمثيل المبياني للدالة g يتقاطعان في النقطة التي أفصولها 2 . f(2) = g(2) فإن

التمرين الثالث:

$$\overrightarrow{AB}$$
 إحداثيات \bigstar (1

$$y_R - y_A = 4 - 0 = 4$$
 و $x_R - x_A = 2 - 4 = -2$ لدينا

. (-2;4) هو الزوج \overline{AB} .

AB المسافة R

$$AB = \sqrt{(-2)^2 + 4^2} = \sqrt{4 + 16} = \sqrt{20} = 2\sqrt{5}$$

$$\frac{y_B - y_A}{x_B - x_A} = \frac{4}{-2} = -2$$
 ب- لدينا

AB في المستقيم المستقيم (AB) أ

$$OB = \sqrt{{x_B}^2 + {y_B}^2} = \sqrt{2^2 + 4^2} = \sqrt{4 + 16} = \sqrt{20} = 2\sqrt{5} = AB$$
 ج- لدینا -ج-

اذن OAB مثلث متساوى الساقين رأسه OAB

موقع الرياضيات و المعلوميات

$$\frac{1}{2}x_C + 3 = \frac{1}{2} \times (-6) + 3 = -3 + 3 = 0 = y_C$$
 (2)
$$\frac{1}{2}x_B + 3 = \frac{1}{2} \times 2 + 3 = 1 + 3 = 4 = y_B$$

. $y = \frac{1}{2}x + 3$ و A تحققان المعادلة المختصرة A و A إذن

. $y = \frac{1}{2}x + 3$ هي (BC) و بالتالي المعادلة المختصرة للمستقيم

$$m_{AB} \times m_{BC} = -2 \times \frac{1}{2} = -1$$
 ب- لدينا

. (AB) ل (BC) إذن

$$\frac{y_A + y_C}{2} = \frac{0+0}{2} = \frac{0}{2} = 0$$
 و $\frac{x_A + x_C}{2} = \frac{4+(-6)}{2} = \frac{-2}{2} = -1$ لاينا (3

. (-1;0) هي الزوج E النقطة النقطة الخراب

4) لدينا

$$AC = 2AE = 2\sqrt{(x_A - x_E)^2 + (y_A - y_E)^2} = 2\sqrt{(4+1)^2 + (0-0)^2} = 2\sqrt{25} = 10$$

$$BD = 2BE = 2\sqrt{(x_B - x_E)^2 + (y_B - y_E)^2} = 2\sqrt{(2+1)^2 + (4-0)^2} = 2\sqrt{9+16} = 2\sqrt{25} = 10$$

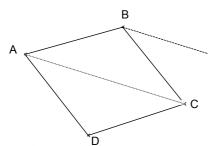
$$AC = BD$$

$$|\dot{\xi}\dot{\psi}\rangle$$

E ومنه ABCD رباعي قطراه متقايسان و لهما نفس المنتصف ABCD و بالتالي ABCD مستطيل.

التمرين الرابع:

لدينا أكبر حصيص هو 6 الموافق للميزتين 20 و 50.
 إذن المتسلسلة الإحصائية لها منوالين هما 20 و 50.


*
$$\frac{2 \times 10 + 6 \times 20 + 5 \times 30 + 4 \times 40 + 6 \times 50 + 3 \times 60 + 1 \times 70 + 1 \times 80 + 2 \times 90}{30}$$
 لدينا (2

$$=\frac{20+120+150+160+300+180+70+80+180}{30}=\frac{1190}{30}=39.67$$

إذن المدة الزمنية المتوسطة هي 39.67 .

. 2+6+5+4+6=23 لدينا عدد التلاميذ الذين يستغرقون أقل من 55 دقيقة لقطع هذه المسافة 23 \times 100 \times 100 \times 100 ولدينا 100 \times 100 \times

إذن النسبة المئوية هي %76.67 .

التمرين الخامس:

- $\mathsf{E} \quad AB$ صورة الدائرة التي مركزها A وشعاعها $\mathsf{B} \in \mathsf{B}$ وشعاعها $\mathsf{B} \in \mathsf{B} \in \mathsf{B}$
- E لدينا صورة A بالإزاحة C هي C و صورة B بالإزاحة C النيا $\overline{AB} = \overline{CE}$ إذن $\overline{AB} = \overline{CE}$

ولدينا
$$ABCD$$
 معين إذن $\overline{AB} = \overline{DC}$ (ب) من (أ) و (ب) نستنتج أن $\overline{DC} = \overline{CE}$ و بالتالي النقطة C منتصف القطعة DC .

التمرين السادس:

.
$$\frac{1}{3} \times 15cm \times 80cm^2 = 400cm^3$$
 هو $SABCD$ حجم الهرم (1

.
$$\frac{SO'}{SO} = \frac{SO'}{2SO'} = \frac{1}{2}$$
 عامل التصغير هو (2

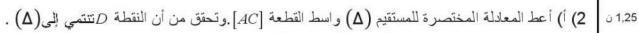
$$.400cm^3 \times \left(\frac{1}{2}\right)^3 = 50cm^3$$
 هو $SA'B'C'D'$ ب- حجم الهرم

دورة:يونيو 2012 مدة الانجاز:ساعتان المعامل:03

2/2

المعامل:03

الاختبارات الموحدة الجهوية لنيل شهادة السلك الإعدادي


المترشحون الرسميون و الأحرار مادة الرياضيات المملكة المغربية


وزارة التربية الوطنية الأكانيمية الجهوية للتربية والتكوين

" يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة "

نص الموضوع	سلم التنقيط
ب) تطبيق.	20 0,5 ن1,25 ن1,25
1) احسب المعدل الحسابي لهذه المتسلسلة الإحصائية . 2) حدد القيمة الوسطية لهذه المتسلسلة الإحصائية.	1ن 1ن
التمرين الثالث: (8 نقط)	
D(1,-3) $gC(5,-1)$ $gB(3,3)$ $gC(5,-1)$ $gB(3,3)$ $gC(5,-1)$ $gB(3,3)$ $gC(5,-1)$ $gB(3,3)$ $gC(5,-1)$ $gB(3,3)$ $gC(5,-1)$ $gB(5,-1)$ $gB($	10,75 0,75 0,5

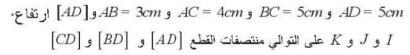
. (AC) على المستقيم B المسقط العمودي للنقطة B على المستقيم

في الشكل جانبه المستقيم (AC)و القمثيل المبياني (T) له اله (O;I;J) خطية f في المعلم المتعامد الممنظم


$$(2cm: 1)$$
 انقل الشكل و أنشئ النقط A و B و D . (الوحدة: $(1$

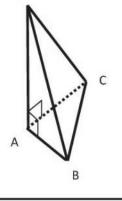
f(-3) عدد مبيانيا قيمة (2)

x ب)حدد صيغة f(x) لكل عدد حقيقي


(T) بين أن المستقيمين (AC) و متوازيان.

$$\begin{cases} y = \frac{-1}{3}x + \frac{2}{3} \\ y = 3x - 6 \end{cases}$$
 (4) حل مبيانيا النظمة:

التمرين الرابع: (03 نقط)


نعتبر الهرم ABCD كما هو مبين في الشكل جانبه، بحيث:

1) احسب حجم الهرم DABC و استنتج حجم الهرم 1

2) أكتحقق من أن المثلث ABC قائم الزاوية.

(ABD) عمودي على المستقيم (AC)

التمرين الخامس: (02 نقطتان)

نعتبر في المستوى نقطتين I و J بحيث: I و I I الدائرتان اللتان مركز هما على (C') و (C') و التوالي (C') و (C')

1) أنشئ شكلا مناسبا للمعطيات.

. [U] بين أن المستقيم (AB) واسط القطعة (2)

J النقطة I النقطة I بالإزاحة التي تحول النقطة I الحدد صورة الدائرة I

. J صورة A بالإزاحة التي تحول النقطة I إلى النقطة A

بين أن A'B قطر في الدائرة (C').

0,5ن 0,5ن

1ن

0,25ن

0,5ن

0,5 ن

0,75ن

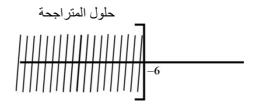
1,5 ن

0.5ن

1ن

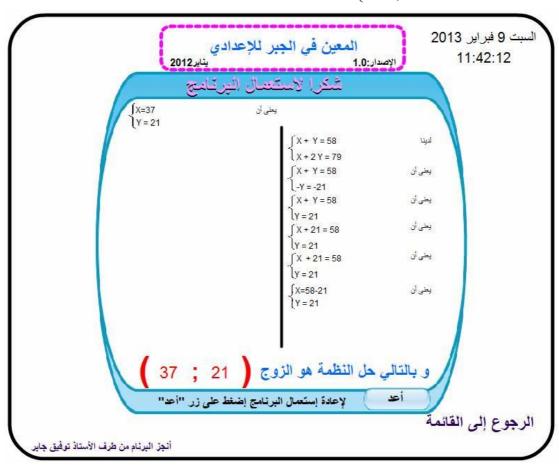
0,5ن

0,5ن


تصحيح الإمتحان الجهوي 2012 مكناس تافيلالت

التمرين الأول:

(1) أ) لدينا
$$3x - 8 = 2(x - 4) + x$$
 لدينا $3x - 8 = 2x - 8 + x$ يعني أن $3x - 8 = 3x - 8$ يعني أن $3x - 8 = 3x - 8$ يعني أن $3x - 3x = -8 + 8$ يعني أن $0 = 0$ يعني أن $0 = 0$ و بالتالى جميع الأعداد الحقيقية هي حل للمعادلة .


$$(2x - x^2 = 0)$$
 لدينا $(2x - x^2 = 0)$ يعني أن $(2 - x) = 0$ يعني أن $(2 - x) = 0$ أو $(2 - x) = 0$ يعني أن $(2 - x) = 0$ يعني أن $(2 - x) = 0$ و بالتالى حلى المعادلة هما $(2 - x) = 0$.

$$\frac{x}{2} - 3 > x$$
 لدينا (2
$$\frac{x}{2} - x > 3$$
 يعني أن $\frac{x}{2} - \frac{2x}{2} > 3$ يعني أن $\frac{x}{2} - \frac{2x}{2} > 3$ يعني أن $\frac{x}{2} - \frac{x}{2} > 3$ وبالتالي جميع الأعدد الأصغر قطعا من $\frac{x}{2} - \frac{x}{2} > 3$ وبالتالي جميع الأعدد الأصغر قطعا من $\frac{x}{2} - \frac{x}{2} > 3$

موقع الرياضيات و المعلوميات

$$\begin{cases} x + y = 58 \\ x + 2y = 79 \end{cases}$$
 (3) النظمة

و به بهر
$$x = x$$
 عدد الأوراق من فئة 50 در هم. $x = x$

عدد الأوراق من فئة 100 در هم.
$$y$$

* صياغة النظمة:

$$\begin{cases} x + y = 58 \\ x + 2y = 79 \end{cases} \text{ as } \begin{cases} x + y = 58 \\ 50x + 100y = 3950 \end{cases}$$

* حل النظمة:

حسب السؤال 3) أ) حل النظمة هو الزوج (37;21) .

* تأويل النتائج:

عدد الأوراق من فئة 50 درهم هو 37.

عدد الأوراق من فئة 100 درهم هو 21.

التمرين الثاني:

$$\frac{1\times7+2\times6+3\times5+4\times6+5\times7+6\times11+7\times3+8\times5}{7+6+5+6+7+11+3+5}$$
 لدينا
$$=\frac{7+12+15+24+35+66+21+40}{50}=\frac{220}{50}=4.4$$
 إذن المعدل الحسابي لهذه المتسلسلة الإحصائية هو 4.4

2) لدينا جدول الحصيصات التراكمة هو:

8	7	6	5	4	3	2	1	عدد السنوات
5	3	11	7	6	5	6	7	عدد المستخدمين
50	45	42	31	24	18	13	7	الحصيص المتراكم

$$\frac{50}{2} = 25$$
 و لدينا

إذن أصغر حصيص متراكم أكبر من أو يساوي 25 هو 31 الموافق للميزة 5 و منه القيمة الوسطية للمتسلسلة الإحصائية هي 5.

التمرين الثالث:

الجزء الأول:

$$y_{B}-y_{A}=3-1=2$$
 و $x_{B}-x_{A}=3-(-1)=4$ الدينا (1 . (4;2) هو \overline{AB} هو (4;2) . (4;2) و الدينا $y_{C}-y_{D}=-1-(-3)=2$ و $x_{C}-x_{D}=5-1=4$ الذن زوج إحداثيتي المتجهة \overline{DC} هو (4;2) . (4;2) ومنه المتجهتين \overline{AB} و \overline{DC} لهما نفس زوج الإحداثيات (4;2) . أي $\overline{AB}=\overline{CD}$ و بالتالى الرباعى \overline{ABCD} هو متوازى أضلاع .

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = \sqrt{4^2 + 2^2} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5}$$
 (2)

$$BC = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2} = \sqrt{(5-3)^2 + (-1-3)^2} = \sqrt{2^2 + 4^2} = \sqrt{4+16} = \sqrt{20} = 2\sqrt{5}$$

$$A C = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} = \sqrt{(5 - (-1))^2 + (-1 - 1)^2} = \sqrt{6^2 + (-2)^2} = \sqrt{36 + 4} = \sqrt{40} = 2\sqrt{10}$$

$$AC^2 = (2\sqrt{10})^2 = 40$$
 لدينا (3 $AB^2 + BC^2 = (2\sqrt{5})^2 + (2\sqrt{5})^2 = 20 + 20 = 40$ ولدينا $AC^2 = AB^2 + BC^2$ إذن $AC^2 = AB^2 + BC^2$ قائم الزاوية في ABC قائم الزاوية في قائمة و حسب مبر هنة فيثاغور س العكسية المثلث $ABCD$ قائم الزاوية قائمة وبما أن $ABCD$ متوازي أضلاع و $ABCD$ مزبع.

الجزء الثاني:

(AC) نعتبر y=mx+p معادلة مختصرة للمستقيم (1

(AC) لدينا A و C نقطتين من المستقيم

$$m = \frac{y_C - y_A}{x_C - x_A} = \frac{-1 - 1}{5 - (-1)} = \frac{-2}{6} = \frac{-1}{3}$$
 إذن

$$p$$
 تحديد الأرتوب عند الأصل p

(AC) لدينا A نقطة من

$$y_A = -\frac{1}{3}x_A + p$$
 إذن

$$1 = \frac{-1}{3} \times (-1) + p$$
 يعني أن

$$1 = \frac{1}{3} + p$$
 يعني أن

$$p=1-\frac{1}{3}$$
 يعني أن

$$p = \frac{2}{3}$$
 يعني أن

.
$$y = -\frac{1}{3}x + \frac{2}{3}$$
 هي (AC) و بالتالي المعادلة المختصرة للمستقيم

[AC] أ ++تحديد المعادلة المختصرة لواسط القطعة (2

[AC]نعتبر و القطعة y=m'x+p' نعتبر نعتبر

$$(AC)$$
 لدينا واسط القطعة $[AC]$ عمودي على المستقيم

$$m \times m' = -1$$
 إذن

$$\frac{-1}{3}$$
× $m'=-1$ یعني أن

$$m' = 3$$
يعني أن

$$[AC]$$
لنحدد زوج احداثیتی النقطة M منتصف القطعة

$$\frac{y_A + y_C}{2} = \frac{1 + (-1)}{2} = \frac{0}{2} = 0$$
 و $\frac{x_A + x_C}{2} = \frac{-1 + 5}{2} = \frac{4}{2} = 2$ لدينا

$$(2;0)$$
 هو الزوج إحداثيتي M

$$[AC]$$
لدينا M نقطة من واسط القطعة

$$y_M = 3x_M + p'$$
إذن

$$0=3\times 2+p$$
' يعني أن

$$p' = -6$$
 يعني أن

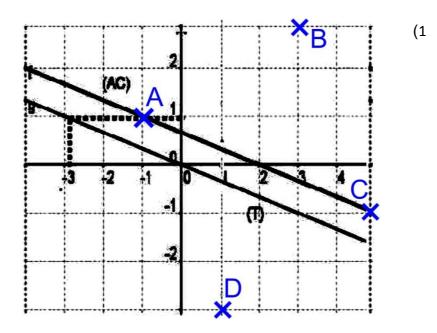
y=3x-6 هي المعادلة المختصرة لو اسط القطعة و بالتالي المعادلة المختصرة لو اسط القطعة

[AC] النقطة D تنتمي إلى واسط القطعة D

$$3x_D - 6 = 3 \times 1 - 6 = 3 - 6 = -3 = y_D$$
 لدينا

[AC] يتحقق المعادلة المختصرة لواسط القطعة [AC]

و بالتالي النقطة D تنتمي إلى واسط القطعة D.


ب) لدينا ABCD مربع

[AC] هو منتصف القطر (AC) هو المستقيم المستقيم المستقيم العمودي للرأس

[AC] ومنه النقطة H هي منتصف القطعة

وبالتالي زوج احداثيتي H هي نفس زوج احداثيتي M أي الزوج (2;0) .

الجزء الثالث

$$f(-3) = 1$$
 (1) (2)

ب) لدينا
$$f = \frac{1}{-3} = \frac{1}{-3} = -\frac{1}{3}$$
 و الله خطية

$$f(x) = -\frac{1}{3}x$$
 إذن

$$f(x) = -\frac{1}{3}x$$
 لاينا (3)

$$y=-rac{1}{3}$$
 إذن المعادلة المختصرة للتمثيل المبياني (T) هي

$$y = -\frac{1}{3}x + \frac{2}{3}$$
 ولدينا المعادلة المختصرة للمستقيم (AC) هي

$$-rac{1}{3}$$
إذن المستقيم (AC) والتمثيل المبياني (T) لهما نفس الميل

(AC)/(T) و بالتالي

موقع الرياضيات و المعلوميات

(AC) لدينا المعادلة
$$y = -\frac{1}{3}x + \frac{2}{3}$$
 لدينا المعادلة المختصرة لا المعادلة $y = -\frac{1}{3}x + \frac{2}{3}$ و ولدينا المعادلة $y = 3x - 6$ و ولدينا المعادلة المختصرة لو السط القطعة $y = 3x - 6$ و والسط القطعة $y = 3x - 6$ و والسط القطعة $y = 3x - 6$ و السط القطعة $y = 3x - 6$ و النظمة هو زوج إحداثيتي النقطة $y = 3x - 6$ و بالتالي حل النظمة هو الزوج $y = 3x - 6$ و المعادلة المع

التمرين الرابع:

DABC حجم الهرم (1

$$\frac{1}{3} \times AB \times AC \times AD = \frac{1}{3} \times 3cm \times 4cm \times 5cm = 20cm^3$$
 لدينا

DIJK حجم الهرم

$$\frac{DI}{DA} = \frac{1}{2}$$
 لدينا

 $\frac{1}{2}$ إذن النسبة التصغير هي

$$\left(\frac{1}{2}\right)^3 \times 20 = \frac{1}{8} \times 20 = 2.5$$
ولدينا

إذن حجم الهرم DIJK هو إذن حجم الهرم

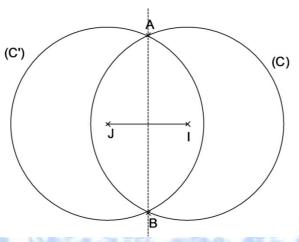
(2 ABC) أ) في المستوى

التمرين الخامس:

(1

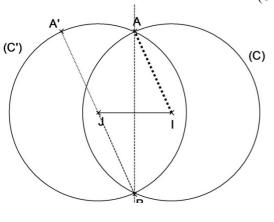
$$BC^2 = (5cm)^2 = 25cm^2$$
لدينا

$$AB^2 + AC^2 = (3cm)^2 + (4cm)^2 = 9cm^2 + 16cm^2 = 25cm^2$$
ولدينا


$$AB^2 + AC^2 = BC^2$$
 اِذِن

A ومنه المثلث ABC مثلث قائم الزاوية في

A و (AD) متقاطعان في النقطة ب


$$(AC) \perp (AB)$$
 و $(AC) \perp (AD)$ و لدينا

(ABD) إذن المستقيم (AC) عمودي على المستوى

$$AI = AJ = 5cm$$
 إذن A تنتمي إلى واسط القطعة $BI = BJ = 5cm$ ولدينا $BI = BJ = 5cm$ إذن B تنتمي إلى واسط القطعة $BI = BJ$ وبالتالي المستقيم $BI = BJ$ هو واسط القطعة $BI = BJ$

ب) صورة الدائرة (C) بالإزاحة t هي الدائرة (C).

(C') قطر للدائرة [A'B] فإن

1/	الصفحة:	الامتدان الجموي الموجع لنيل شماحة السلك الإعدادي
/2		دورة يونيه 2012
ساعتان	مدة الإنجاز:	المادة: الرياضيات
3	المعامل:	الموضوع

الأكاديمية الجهوية للتربية والتكوين لجهة الدار البيضاء الكبرى

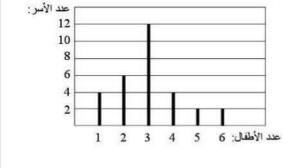
0.75ن

1ن

التمرين الأول: (5ن)

- 1) حل المعادلة: 3x - 1 = x - 5
- 2) حل المتراجحة: -2x+1 < x-50.75ن
- (3x-2)(x+1)=03) حل المعادلة: 1ن
 - 2x + 3y = 184) أ- حل النظمة: 1.5ن 3x + 2y = 17

ب- اشترى أحمد وعمر أقلاما ودفاتر من نفس النوع:


اشترى أحمد قلمين وثلاثة دفاتر بمبلغ 18 درهما واشترى عمر ثلاثة أقلام ودفترين بمبلغ 17 درهما.

حدد ثمن القلم الواحد وثمن الدفتر الواحد.

التمرين الثاني: (2ن)

يمثل المخطط جانبه توزيع 30 أسرة حسب عدد الأطفال:

- حدد منوال هذه المتسلسلة الإحصائية. 0.5ن
 - 2) ضع جدولا للحصيصات. 0.75ن
 - 3) احسب معدل عدد أطفال هذه الأسر. 0.75ن

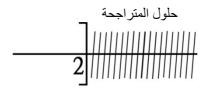
التمرين الثالث: (4ن)

المستوى منسوب إلى معلم متعامد ممنظم.

- $f(x) = \frac{1}{2}x + \frac{3}{2}$ نعتبر الدالة التآلفية f المعرفة بما يلي: (1
 - 0.5ن أ- احسب صورة العدد 1 بالدالة f
- ب- حدد نقطة تقاطع التمثيل المبياني للدالة f مع محور الأراتيب. 0.5ن
 - g(-1) = -2 : لتكن الدالة الخطية g التي تحقق: g
 - g(x) = 2x أ- بين أن:
- A(1;2) من أن التمثيلين المبيانيين للدالتين f و g يمران معا من النقطة
 - 3) أنشئ التمثيلين المبيانيين للدالتين f و g

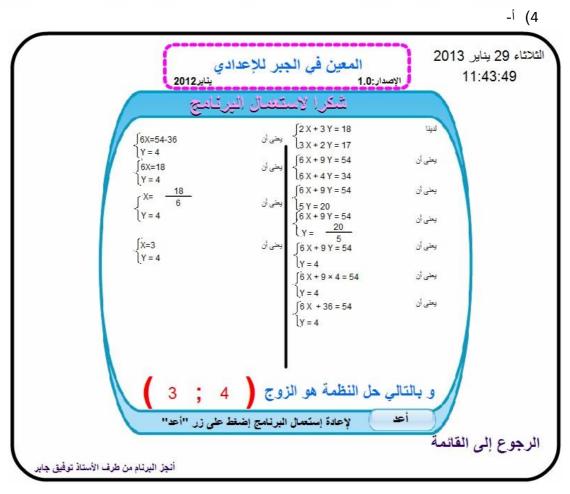
1ن

1ن


2/2	الصفحة	لإعدادي	ل شهادة السلك ا	الامتحان الجهوي الموحد لنيا	
/2	,	نيه 2012	دورة يوا	المادة: الرياضيات	2-
				التمرين الرابع: (2 ن)	
		B إلى A	نعتبر الإزاحة t الت	. I مربعا مرکزه $ABCD$ لیکن	
			t $ $	ا) أنشئ النقطة J صورة I با	0.5ن
			t بالإزاحة	2) أ- حدد صورة الزاوية AID	0.5ن
			قائم الزاوية.	ب- استنتج أن المثلث BJC	0.5ن
	t til	هي صورة B بالإ K	بین أن ، $\overrightarrow{CK}=\overrightarrow{I}$	\overrightarrow{OB} نعتبر النقطة K بحيث (3	0.5ن
H	1 G			التمرين الخامس (3 ن)	
E	F/	حيث :	ABCDEFGH .	نعتبر متوازي مستطيلات قائم	
			AE = 6 cm g	AC = 5cm g $AB = 4cm$	
				BC = 3cm: بين أن	1ن
		;	هو 12 <i>cm</i> 3	2) بين أن حجم الهرم EABD	1ن
		,	لمحصل بعد تصغير	3) احسب حجم الهرم 'EA'B'D ال	1ن
Α 💆	/ _B			$rac{1}{2}$ الهرم $EABD$ بالنسبة	
				التمرين السادس: (4 ن)	
		(0	(I,J) عامد ممنظم	المستوى منسوب إلى معلم مت	
			E(3;2) و $B(-1$	نعتبر النقط $A(1;3)$ و $(1-;1)$	
			\overline{A}	\overrightarrow{B} أ- حدد إحداثيتي المتجهة (1	0.5ن
				AB=2AE بین أن:	1ن
			هو 2	(AB) بين أن ميل المستقيم (2	0.5ن
		$y=-\frac{1}{2}x+\frac{7}{2}$	عادلته المختصرة:	(Δ) نعتبر المستقيم (Δ) الذي م	
			A من	أ- بين أن المستقيم (Δ) يمر	0.5ن
			و (AB) متعامدان	(Δ) بين أن المستقيمين	0.5ن
		A متوازي أضلاع.	حيث يكون ABFE	F أ- حدد إحداثيتي النقطة أ	0.5ن
			المستقيم (EF)	ب- حدد المعادلة المختصرة ل	0.5ن

تصحيح الإمتحان الجهوي 2012 جهة الدار البيضاء الكبرى

التمرين الأول:


$$3x-1=x-5$$
 لدينا (1 $3x-x=-5+1$ يعني أن $2x=-4$ يعني أن $x=\frac{-4}{2}$ يعني أن $x=-2$ يعني أن $x=-2$ يعني أن $x=-2$ و بالتالي حل المعادلة هو $x=-2$

$$-2x+1 < x-5$$
 لدينا (2 $-2x-x < -5-1$ يعني أن $-3x < -6$ يعني أن $x > \frac{-6}{-3}$ يعني أن $x > 2$ يعني أن $x > 2$ يعني أن وبالتالي جميع الأعدد الأكبر قطعا من 2 هي حلول للمتراجحة.

$$(3x-2)(x+1) = 0$$
 لدينا (3 $3x-2=0$ يعني أن $x+1=0$ أو $3x=2$ يعني أن $x=-1$ أو $x=\frac{2}{3}$ أن $x=-1$ أو $x=\frac{2}{3}$ أن

و بالتالي المعادلة لها حلين هما 1 و بالتالي المعادلة لها حاين

ب- * تحديد المجهولين المناسبين:

ثمن القلم الواحد. \dot{x}

ب ثمن الدفتر الواحد. y

* صياغة النظمة:

 $\int 2x + 3y = 18$

3x + 2y = 17

🖈 حل النظمة:

حسب السؤال 4) أ- حل النظمة هو الزوج (3;4) .

* تأويل النتائج:

ثمن القلم الواحد هو 3.

ثمن الدفتر الواحد هو 4

التمرين الثاني:

1) نلاحظ حسب المخطط أن أكبر حصيص هو 12 الموافق للميزة 3 إذن منوال المتسلسلة الإحصائية هو 3.

(2

6	5	4	3	2	1	عدد أطفال الأسرة
2	2	4	12	6	4	عدد الأسر

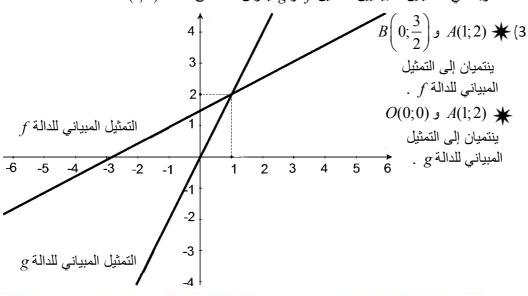
التمرين الثالث:

$$f(1) = \frac{1}{2} \times 1 + \frac{3}{2} = \frac{1}{2} + \frac{3}{2} = \frac{4}{2} = 2$$
 - (1)
$$\frac{3}{2} = \frac{3}{2} + \frac{3}{2} = \frac{4}{2} = 2$$
 - (1)

إذن نقطة تقاطع التمثيل المبياني للدالة f مع محور الأراتيب هي النقطة B ذات الإحداثيات

$$.\left(0;\frac{3}{2}\right)$$

وبما أن ي الله خطية g(x) = ax أ- لدينا g(x) = ax إذن g(-1) = -2 وبما أن $a = \frac{g(-1)}{-1} = \frac{-2}{-1} = 2$ فإن g(x) = 2x و بالتالي g(x) = 2x


f(1) = 2 ب- لدينا

. f النقطة A(1;2) تنتمي إلى التمثيل المبياني للدالة

 $g(1) = 2 \times 1 = 2$ لدينا

. g النقطة (A(1;2) تنتمي إلى التمثيل المبياني للدالة

. A(1;2) و التمثيلين المبيانيين للدالتين f و g يمران معا على النقطة

A B B

التمرين الرابع:

(1

B أ- لدينا صورة A بالإزاحة t هي D صورة D بالإزاحة D هي D

 \widehat{BJC} بالإزاحة t هي أذن صورة

 \widehat{BJC} بالإزاحة t هي \widehat{AID} و صورة \widehat{AID} بالإزاحة t هي \widehat{AID} بالإزاحة تحافظ على قياس الزوايا)

. J قائم الزاوية في BJC .

$$\overrightarrow{CK} = \overrightarrow{DB}$$
 لدينا (3 $\overrightarrow{CK} = \overrightarrow{DB} + \overrightarrow{BK} = \overrightarrow{DA} + \overrightarrow{AB}$ إذن $\overrightarrow{CB} = \overrightarrow{DA} + \overrightarrow{AB}$ (لأن \overrightarrow{ABCD} مربع) فإن $\overrightarrow{BK} = \overrightarrow{AB}$ مي صورة \overrightarrow{B} بالإزاحة \overrightarrow{B} .

التمرين الخامس:

(ABC) في المستوى (1

B قائم الزاوية في ABC لدينا المثلث

 $AC^2 = AB^2 + BC^2$ (خ.م.ف.م)

 $AB^2 = AC^2 - BC^2$ يعني أن

 $AB^2 = (5cm)^2 - (4cm)^2$ يعني أن

 $AB^2 = 25cm^2 - 16cm^2$ يعني أن

 $AB^2 = 9cm^2$ يعني أن

 $AB = \sqrt{9cm^2}$ each

AB = 3cm وبالتالي

AE و ارتفاع الهرم هو $rac{AB imes BC}{2}$ و ارتفاع الهرم هو

$$\frac{1}{3} \times AE \times \left(\frac{AB \times BC}{2}\right) = \frac{1}{3} \times 6cm \times \left(\frac{4cm \times 3cm}{2}\right) = 12cm^3$$
ولدينا

. $12cm^3$ وأذن حجم الهرم هو

$$\left(\frac{1}{2}\right)^3 \times 12 = \frac{1}{8} \times 12 = \frac{12}{8} = \frac{3}{2}$$
 ليبنا (3)

. $\frac{3}{2}$ د هو EA'B'C' هو الهرم

التمرين السادس:

$$y_B - y_A = -1 - 3 = -4$$
 g $x_B - x_A = -1 - 1 = -2$ [1] -1 [1] -1 [2] -1 [2] -1 [3] -1 [4] -1 [4] -1 [5] -1 [5] -1 [6] -1 [6] -1 [6] -1 [7] -1 [7] -1 [7] -1 [8] -1 [8] -1 [9] -1 [9] -1 [10] $-$

وبالتالى إحداثيات F لكي يكون ABFE متوازي أضلاع هي الزوج (1;-2) .

(EF)ب- نعتبر y = mx + p المعادلة المختصرة للمستقيم

$$m$$
 تحدید المیل $(AB)//(EF)$ لدینا $m-m-2$

$$m=m_{AB}=2$$
 إذن $m{x}$ تحديد الأرتوب عند الأصل $m{x}$

(EF)لدينا E نقطة من المستقيم

$$y_{\scriptscriptstyle E}=2x_{\scriptscriptstyle E}+p$$
 إذن $2=2 imes 3+p$ يعني أن $2=6+p$ يعني أن $p=-4$

. y = 2x - 4 هي (EF) و بالتالى المعادلة المختصرة للمستقيم

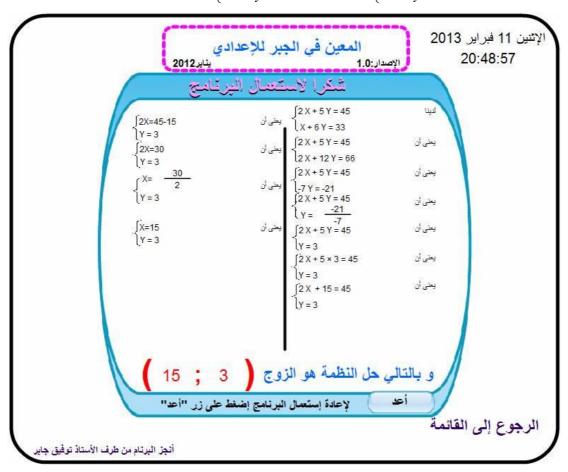
1/2	دورة يونيو 2012
1/2	المعامل: 3
م.ر	مدة الإنجاز: 2 س
	special grade can an

امتحان نيل شهادة السلك الإعدادي مادة: الرياضيات (المترشحون الرسسون)

	التمرين الأول: عدد حقيقي.	5 نقط						
	2(x-1) = 3x-4 = حل المعادلة:	1						
	$4x + 3 \le 3(x + 1)$ حل المتراجحة: (2							
	$\begin{cases} 2x+5y-45=0 \\ x+6y-33=0 \end{cases}$: عددان حقیقیان. حل جبریا النظمة التالیة $x+6y-33=0$							
İ	x+6y-33=0 4 4 4 6 6 1 1 1 1 1 1 1 1 1 1							
	به إدا علمت ال عمل عنابيل و و دفار هو 43DH و عمل عناب و الحد و ل دفار من عمل النوح هو 43DH و المد؟							
	التمرين الثاني:	2 نقط						
	يمثل الجدول التالي توزيعا لأعمار تلاميذ قسم من المستوى الثالث إعدادي.							
	أعمار التلاميذ 14 16 16 17							
	عدد التلاميذ 10 6 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.5						
	 عدد القيمة الوسطية لهذه المتسلسلة الإحصائية. 	0,5						
	2) حدد العيمة الوسطية لهذه المتسلسلة الإحصائية. 3) احسب المعدل الحسابي لهذه المتسلسلة الإحصائية.							
	(3							
ŀ	التمرين الثالث:							
		4 نقط						
	في المستوى المنسوب إلى معلم متعامد ممنظم (O,I,J) ، نعتبر النقط $A(2,-1)$ و $B(4,1)$ و $C(2,2)$. (BC) قي المعادلة المختصرة للمستقيم $y=-\frac{1}{2}x+3$	4 نقط 1						
	. $C(2,2)$ و $B(4,1)$ و $A(2,-1)$ نعتبر النقط $A(2,-1)$ و $B(4,1)$ و $B(4,1)$ و $B(4,1)$							
	. $C(2,2)$ و $B(4,1)$ و $A(2,-1)$ نعتبر النقط $A(2,-1)$ و $B(4,1)$ و $A(2,-1)$ في المستوى المنسوب إلى معلم متعامد ممنظم $y=-\frac{1}{2}x+3$ (1) تحقق أن: $y=-\frac{1}{2}x+3$ هي المعادلة المختصرة للمستقيم $B(3,\frac{3}{2})$ أ- بين أن النقطة $B(3,\frac{3}{2})$ هي منتصف القطعة $B(3,\frac{3}{2})$ واسط القطعة $B(3,\frac{3}{2})$ بين أن: $y=2x-\frac{9}{2}$ هي المعادلة المختصرة للمستقيم $B(3,\frac{3}{2})$ واسط القطعة $B(3,\frac{3}{2})$	1						
	في المستوى المنسوب إلى معلم متعامد ممنظم (O,I,J) ، نعتبر النقط $A(2,-1)$ و $B(4,1)$ و $B(2,2)$. (1) تحقق أن: $y=-\frac{1}{2}x+3$ هي المعادلة المختصرة للمستقيم (BC) هي منتصف القطعة $B(2,2)$.	1						
	. $C(2,2)$ و $B(4,1)$ و $A(2,-1)$ نعتبر النقط $A(2,-1)$ و $B(4,1)$ و $A(2,-1)$ في المستوى المنسوب إلى معلم متعامد ممنظم $y=-\frac{1}{2}x+3$ (1) تحقق أن: $y=-\frac{1}{2}x+3$ هي المعادلة المختصرة للمستقيم $B(3,\frac{3}{2})$ أ- بين أن النقطة $B(3,\frac{3}{2})$ هي منتصف القطعة $B(3,\frac{3}{2})$ واسط القطعة $B(3,\frac{3}{2})$ بين أن: $y=2x-\frac{9}{2}$ هي المعادلة المختصرة للمستقيم $B(3,\frac{3}{2})$ واسط القطعة $B(3,\frac{3}{2})$	1 1 1						
	. $C(2,2)$ و $B(4,1)$ و $A(2,-1)$ نعتبر النقط $A(2,-1)$ و $B(4,1)$ و $A(2,-1)$ في المستوى المنسوب إلى معلم متعامد ممنظم $y=-\frac{1}{2}x+3$ (1) تحقق أن: $y=-\frac{1}{2}x+3$ هي المعادلة المختصرة للمستقيم $B(3,\frac{3}{2})$ أ- بين أن النقطة $B(3,\frac{3}{2})$ هي منتصف القطعة $B(3,\frac{3}{2})$ واسط القطعة $B(3,\frac{3}{2})$ بين أن: $y=2x-\frac{9}{2}$ هي المعادلة المختصرة للمستقيم $B(3,\frac{3}{2})$ واسط القطعة $B(3,\frac{3}{2})$	1 1 1						
	(C(2,2)) $B(4,1)$ $A(2,-1)$ $A(2,-1)$ $A(2,-1)$ $A(2,-1)$ $A(2,-1)$ $A(2,-1)$ $A(2,-1)$ $A(2,-1)$ $A(2,-1)$ $A(3,-1)$ $A(3$	1 1 1 1						
	في المستوى المنسوب إلى معلم متعامد ممنظم (O,I,J) ، نعتبر النقط $(1,-1)$ و $(0,1,J)$ و $(0,1,J)$ و $(0,1,J)$ و المعادلة المختصرة المستقيم $(0,1,J)$ المعادلة المختصرة المستقيم $(0,1,J)$ هي منتصف القطعة $(0,1,J)$ هي منتصف القطعة $(0,1,J)$ هي منتصف القطعة $(0,1,J)$ هي المعادلة المختصرة المستقيم $(0,1,J)$ و السط القطعة $(0,1,J)$ و المار من النقطة $(0,1,J)$ مربع مركزه النقطة $(0,1,J)$ الموازي المستقيم $(0,1,J)$ الموازي المستقيم $(0,1,J)$ و المار من النقطة $(0,1,J)$ و المار	1 1 1 1 2 0,5						
	في المستوى المنسوب إلى معلم متعامد ممنظم (O,I,J) ، نعتبر النقط $(1,-1)$ و $(0,1,J)$ و $(0,1,J)$ تحقق أن: $(1,-1)$ $(1,-1)$ هي المعادلة المختصرة للمستقيم $(1,-1)$ هي منتصف القطعة $(1,-1)$ هي منتصف القطعة $(1,-1)$ هي منتصف القطعة $(1,-1)$ هي المعادلة المختصرة للمستقيم $(1,-1)$ و السط القطعة $(1,-1)$ هي المعادلة المختصرة للمستقيم $(1,-1)$ الموازي للمستقيم $(1,-1)$ والمار من النقطة $(1,-1)$ هي المعادلة المختصرة النقطة $(1,-1)$ الموازي المستقيم $(1,-1)$ الموازي المستقيم $(1,-1)$ الموازي المستقيم $(1,-1)$ النقطة $(1,-1)$ الموازي المستورة المستورة $(1,-1)$ الموازي المستورة	1 1 1 1 2 0,5 0,5						
	في المستوى المنسوب إلى معلم متعامد ممنظم (O,I,J) ، نعتبر النقط $(1,-1)$ و $(0,1,J)$ و $(0,1,J)$ و $(0,1,J)$ و المعادلة المختصرة المستقيم $(0,1,J)$ المعادلة المختصرة المستقيم $(0,1,J)$ هي منتصف القطعة $(0,1,J)$ هي منتصف القطعة $(0,1,J)$ هي منتصف القطعة $(0,1,J)$ هي المعادلة المختصرة المستقيم $(0,1,J)$ و السط القطعة $(0,1,J)$ و المار من النقطة $(0,1,J)$ مربع مركزه النقطة $(0,1,J)$ الموازي المستقيم $(0,1,J)$ الموازي المستقيم $(0,1,J)$ و المار من النقطة $(0,1,J)$ و المار	1 1 1 1 2 0,5						

2/2	عدادي (المترشحون الرسميون)	امتحان نيل شهادة السلك الإع	الأكاديمية الجهوية للتربية والتكوين جهة : فاس _ بولمان
م.ر	– يونيو 2012 –	مادة : الرياضيات	100 3000 100

	التمرين الخامس:	4 نقط		
g(x)=3x+2 نعتبر الدالة التآلفية g المعرفة كما يلي:				
.g(0) احسب (1				
g بالدالة و الذي صورته a الذي صورته (1- بالدالة و الدي صورته (2- بالدالة و الدي صورته (3- بالدالة و الدي طلقة و الدي (3- بالدالة و الدالة و الدي (3- بالدالة و الدالة و				
ϕ أنشئ التمثيل المبياني للدالة ϕ في مستوى منسوب إلى معلم متعامد ممنظم (O,I,J) .				
3) قام تاجر أحذية بتخفيض ثمن سلعته بنسبة 40%.				
أ - بين أن الحداء الذي كان ثمنه 750 DH قبل التخفيض، سيصبح ثمنه بعد التخفيض 450 DH.				
ب - نعتبر الدالة f التي تربط x ثمن الحذاء قبل التخفيض بثمنه $f(x)$ بعد التخفيض،				
$f(x)=\frac{3}{5}x$ بین أن:				
	3			
	التمرين السادس:	3 نقط		
C				
	لیکن $ABCDEFGH$ متو از ی مستطیلات قائم بحیث: $AB = AE = 6cm$ و $AD = 4cm$. النقط $AB = AE = 6cm$			
	" AB = AE = 00m و " AD = 40m المعدد الو رو A المعدد المعد			
B	AI = AK = 4,5cm بحيث: $AJ = 3cm$			
	$.\frac{AI}{AB} = \frac{AJ}{AD}$ أ) تحقق أن: (1	0,5		
	AD - AD	-/-		
	(BD) استنتج أن المستقيمين (U) و	0,5		
G H	متوازيان.			
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	81			
	$rac{81}{8}cm^3$:ققق أن حجم الهرم AIJK هو (2	1		
E.	قمنا بتصغير الهرم $AIJK$ بنسبة تساوي $\frac{2}{3}$.			
	✓ كم سيصبح حجم الهرم المحصل عليه بعد	1		
	هذا التصنغير ؟			
	- T			


حلول المتراجحة

تصحيح الإمتحان الجهوي 2012 فاس بولمان

التمرين الأول:

$$2(x-1) = 3x - 4$$
 لدينا (1 $2x - 2 = 3x - 4$ يعني أن $2x - 3x = -4 + 2$ يعني أن $-x = -2$ يعني أن $x = 2$ يعني أن $x = 2$ و بالتالى حل المعادلة هو $x = 2$ و بالتالى حل المعادلة هو $x = 2$

$$\begin{cases} 2x + 5y = 45 \\ x + 6y = 33 \end{cases}$$
 is $\begin{cases} 2x + 5y - 45 = 0 \\ x + 6y - 33 = 0 \end{cases}$ (3)

ي أثمن الكتاب الواحد. x

يا y ثمن الدفتر الواحد.

💥 صياغة النظمة:

$$\begin{cases} x + y = 45 \\ 5x + 3y = 163 \end{cases}$$

🖈 حل النظمة:

حسب السؤال 3) حل النظمة هو الزوج (15;3) .

* تأويل النتائج:

ثمن الكتاب الواحد هو 15.

ثمن الدفتر الواحد هو 3.

التمرين الثاني:

1) نلاحظ حسب الجدول أن أكبر حصيص هو 10 الموافق للميزة 14.

إذن منوال المتسلسلة الإحصائية هو 14.

2) لدينا جدول الحصيصات المتراكمة هو

17	16	15	14	اعمار التلميد
4	5	6	10	عدد التلاميذ
25	21	16	10	الحصيص المتراكم

$$\frac{25}{2}$$
 = 12.5 ولدينا

إذن أصغر حصيص أكبر من أو يساوي 12.5 هو 16 الموافق للميزة15 .

و منه القيمة الوسطية للمتسلسلة الإحصائية هي 15.

إذن المعدل الحسابي للمتسلسلة الإحصائية هو 15.12.

التمرين الثالث:

$$-\frac{1}{2}x_{B} + 3 = -\frac{1}{2} \times 4 + 3 = -2 + 3 = 1 = y_{B}$$
 لدينا (1)
$$-\frac{1}{2}x_{C} + 3 = -\frac{1}{2} \times 2 + 3 = -1 + 3 = 2 = y_{C}$$
 ولدينا (2)

$$y=-rac{1}{2}x+3$$
 إذن إحداثيات النقطتين B و B تحققان المعادلة المختصرة

$$y=-rac{1}{2}x+3$$
 وبالتالي المعادلة المختصرة للمستقيم (BC) هي

$$\frac{y_B + y_C}{2} = \frac{1+2}{2} = \frac{3}{2} = y_M$$
 و $\frac{x_B + x_C}{2} = \frac{4+2}{2} = \frac{6}{2} = 3 = x_M$ أ- لدينا M ذات الإحداثيات M ذات الإحداثيات M

موقع الرياضيات و المعلوميات

$$(D)$$
ب نعتبر $y = mx + p$ معادلة مختصرة للمستقيم \bigstar تحديد الميل $(D) + (BC)$

$$(D) \perp (BC)$$
 لدينا

$$m \times \left(-\frac{1}{2}\right) = -1$$
 إذن

m=2 يعني أن

$$p$$
 تحديد الأرتوب عند الأصل \bigstar

(D)لدينا M نقطة من المستقيم

$$y_{M} = 2x_{M} + p$$
 إذن

$$\frac{3}{2} = 2 \times 3 + p$$
يعني أن

$$p = \frac{3}{2} - 6$$
يعني أن

$$p = -\frac{9}{2}$$
يعني أن

 $y=2x-rac{9}{2}$ و بالتالي المعادلة المختصرة للمستقيم

$$(\Delta)$$
 معادلة مختصرة للمستقيم $y=m'x+p'$ نعتبر (3

$$(D)//(\Delta)$$
 لدينا

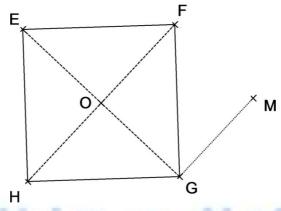
$$m'=2$$
 إذن

$$p'$$
تحديد الأرتوب عند الأصل $\#$

 (Δ) لدينا A نقطة من المستقيم

$$y_A = 2x_A + p$$
' إذن

$$-1 = 2 \times 2 + p$$
' يعني أن


$$p' = -1 - 4$$
 يعني أن

$$p'=-5$$
ومنه

. y=2x-5 هي (Δ) هي المختصرة للمستقيم و بالتالي المعادلة المختصرة للمستقيم

التمرين الرابع:

(1

موقع الرياضيات و المعلوميات

$$\overrightarrow{HO} = \overrightarrow{OF}$$
 و منه

وبالتالى صورة النقطة H بالإزاحة t هي النقطة O

F الدينا صورة النقطة O بالإزاحة t هي النقطة O

M ولدينا صورة النقطة G بالإزاحة ولدينا صورة النقطة

إذن صورة الدائرة التي مركزها G وتمر من G بالإزاحة t هي الدائرة التي مركزها F وتمر من M .

التمرين الخامس:

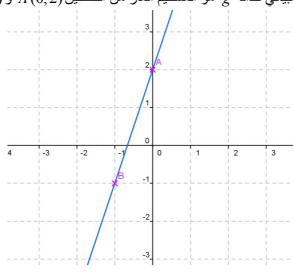
$$g(0) = 3 \times 0 + 2 = 0 + 2 = 2$$
 (1

$$g(a) = -1$$
 أ- لدينا (2

$$3a + 2 = -1$$
 يعني أن

$$3a = -1 - 2$$
 يعني أن

$$3a = -3$$
 يعني أن


$$a = \frac{-3}{3}$$
 يعني أن

$$a=-1$$
 يعني أن

وبالتالي العدد a الذي صورتهa بالدالة g هو a

$$g(-1) = -1$$
 و $g(0) = 2$

 $B\left(-1;-1
ight)$ و $A\left(0;2
ight)$ و المستقيم المار من النقطتين و و المستقيم المار و المستقيم المار عن المار ع

$$750 - 750 \times \frac{40}{100} = 750 - 75 \times 4 = 750 - 300 = 450$$
 أ- لدينا (3

إذن ثمن الحذاء بعض التخفيض هو 450 در هم.

$$f(750) = 450$$
 أ- (3 بنا حسب لدينا

$$\frac{f(750)}{750} = \frac{450}{750} = \frac{3}{5}$$
 هو f أذن معامل الدالة f

.
$$f(x) = \frac{3}{5}x$$
 و بالتالي

التمرين السادس:

$$\frac{AJ}{AD} = \frac{3cm}{4cm} = \frac{3}{4}$$
 و $\frac{AI}{AB} = \frac{4.5cm}{6cm} = \frac{9}{12} = \frac{3}{4}$ (أ) (1)

$$\frac{AI}{AB} = \frac{AJ}{AD}$$
 إذن

ب) في المستوى (ABC)

$$\frac{AI}{AB} = \frac{AJ}{AD}$$
لدينا

(IJ)//(BD) إذن حسب الشكل و حسب مبر هنة طاليس العكسية

$$\frac{1}{3} \times \left(\frac{AJ \times AI}{2}\right) \times AK = \frac{1}{3} \times \left(\frac{3cm \times 4.5cm}{2}\right) \times 4.5cm = \frac{20.25}{2}cm^3 = \frac{81}{8}cm^3$$
 لينا (2

. $\frac{81}{8}$ cm³ هو AIJK إذن حجم الهرم

$$\left(\frac{2}{3}\right)^3 \times \frac{81}{8} = \frac{8}{27} \times \frac{81}{8} = \frac{81}{27} = 3$$
 Light (3)

 $3cm^{3}$ التصغير هو التصغير المرم بعد التصغير

المملكة المفربية

المعامسان : 3

مدة الإنجاز: ساعتان

وزارة التربية الواسنية

1 2

المادة: الرياضيات

الامتحان الجهوي الموحد لنيل شهادة السلك الإعدادي دورة : يونيو 2012

-					_		
للبرمجة	Atdatt at	deale !!	A In H	21111	# 7 1.		41
		-	الحاسب	~~ 31	يستعمان	يسمح	×
	92	573	100		-	-	

التمرين الأول (4.5 نقط) : x + 5 = 17 و x + 5 = 17 و x + 5 = 17

 $\begin{cases} x - 2y = 6 \\ 2x + y = 7 \end{cases}$: a time is a constant (3)

التمرين الثاني (2 نقط): من كشف لأعداد التلاميذ في أقسام ثانوية إعدادية ، حصلنا على الجدول التالي :

1 نقل الجدول الإحصائي إلى ورقتك و أتمم ملأه الحصيص(عدد الأفسام) 28 28 30 30 32 30 10 10 0 5 6 5 6 0 0.5 0.5 0 0.5

3) أحسب المعدل الحسابي للمتسلسلة الإحصائية

التمرين الثالث (2 نقط):

مريع مركزه O و t الإزاحة التي تحول النقطة A إلى النقطة O ، و 'B صورة النقطة B بالإزاحة t ، و 'D صورة النقطة D بالإزاحة t ، و 'D صورة النقطة D بالإزاحة t

أنقل الشكل إلى ورقتك ، ثم أنشئ النقطنين 'B' و 'D'
 أنقل الشكل إلى ورقتك ، ثم أنشئ النقطنين 'B'
 أن D'
 أن D'
 أن D'
 أن D'
 أن D'
 أن D'

2) تحقق أن صورة النقطة O بالإزاحة t هي C ، ثم استنتج أن C منتصف القطعة [B'D']

3) بين أن المستقيمين (AC) و (B'D') متعامدان

0,5 ن 1 ن

1 ن

1,5 ن

2 ن

0,5 ن

0,5 ن

1 ن 0,5 ن

1 ن 0,75 *ن*

التمرين الرابع (4 نقط) :

في المستوى المنسوب الى معلم متعامد ممنظم (O,1,J) ، نعتبر النقط (A(1,3) و (5,-1) C(8,-4)

(AB) هي المعادلة المختصرة للمستقيم y = -x + 4

2) حدد إحداثيتي المتجهة AC

ε) حدد معادلة للمستقيم (Δ) المار من النقطة D و العمودي على المستقيم (AB)

4) احسب إحداثيتي النقطة M منتصف القطعة [AB]

0,75 نين أن المستقيم (A) واسط القطعة [AB]

2 3 4 1 1 1 1 1 1 1 1 1

غ الأكاديمية الجهوية للتربية والتكوين للجهة الشرقية - -وجدة قسم الشؤون التربوية -- مصلحة الامتحانــــات الهاتف: 0536689193 الفاكس: 0536689194

وزارج التربية الويصنية

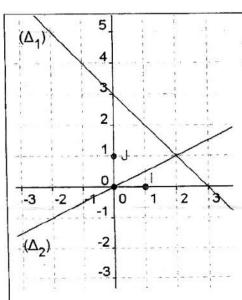
دورة : يونيو 2012

2

المادة: الرياضيات

1 ن

1 ن


1 ن 0.75 ن

0.75ن

1 ن

1 ن

1 ن

التمرين الخامس (4.5 نقط):

في المستوى المنسوب إلى معلم متعامد ممنظم (0,1,0) ،

المستقيمان (1 Δ) و (Δ) هما التمثيلان المبيانيان ،
على التوالي ، للدالتين f و g (أنظر الشكل)

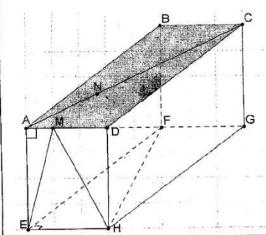
g(2) و g(0) م f(-2) و f(0) و (1) اوجد مبیانیا (2) و رو f(x) عدد حقیقی (2) حدد صبغه (x بدلاله g(x) عدد حقیقی

نحقق ان f(x) = -x + 3 عدد حقیقی (3) تحقق ان

f(x) = 5 : alukali | Law | 4 (x - 2y = 0) : (x -

 $\begin{cases} x-2y=0 \\ x+y=3 \end{cases}$: (5)

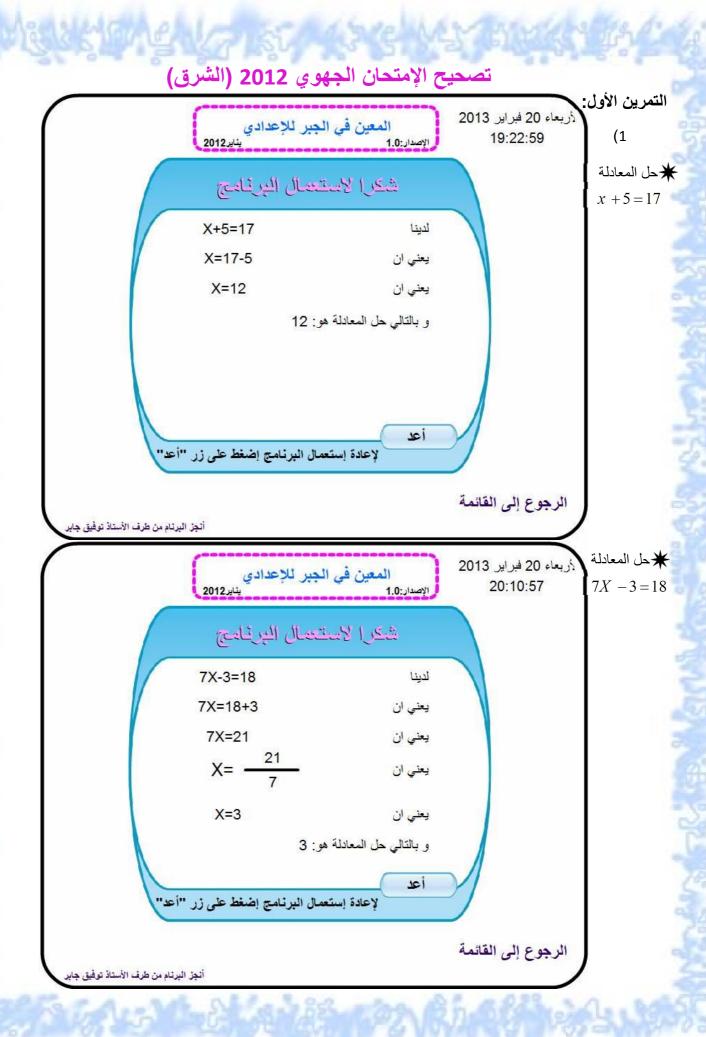
التمرين السادس (3 نقط) :

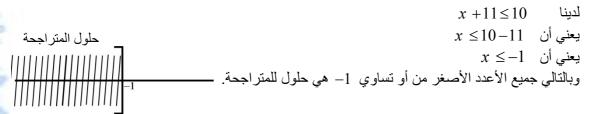

AE = 8 cm AB = 10 cm AB = 6 cm

AC = 3AN e AM = 2 cm

ME (1

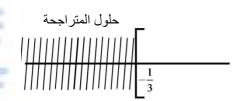
2) بين أن المستقيمين (MN) و (DC) متوازيان ثم أحسب MN


3) بين أن حجم الهرم EFHM هو 30cm³

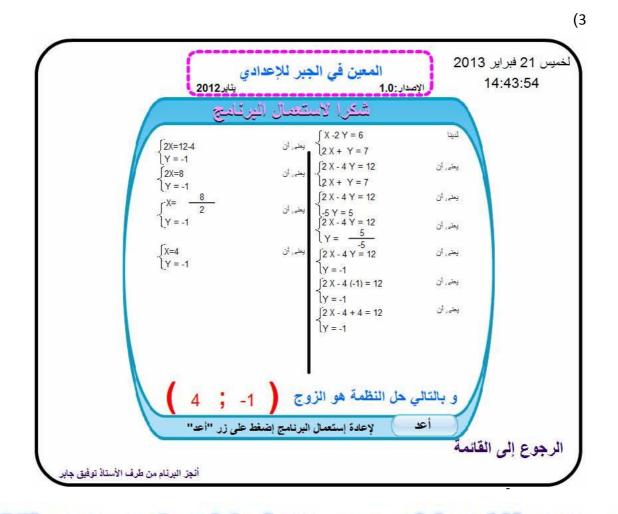

مرسة النسب

الأكاديمية الجهوية للتربية والتكوين للجهة الشرقية - -وجدة قسم الشؤون التربوية – مصلحة الامتحابات الماحقة 0536689193
 الهاتف: 0536689193 الفاكس: 0536689194

موقع الرياضيات و المعلوميات



 $x + 11 \le 18$ حل المتراجحة $x + 11 \le 18$



-3x > 1 حل المتراجحة \star

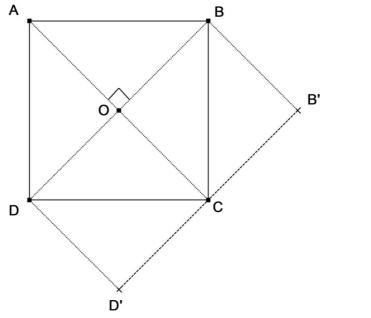
$$-3x > 1$$
 لدينا $x < \frac{1}{-3}$ ريعني أن $x < -\frac{1}{3}$ يعني أن $x < -\frac{1}{3}$

وبالتالي جميع الأعدد الأصغر قطعا $\frac{1}{3}$ هي حلول للمتراجحة.

التمرين الثاني:

1

32	30	28	26	قيمة الميزة
6	5	9	10	الحصيص
30	24	19	10	الحصيص المتراكم


لدينا أكبر حصيص هو 10 الموافق للميزة 26.
 وبالتالى منوال المتسلسلة الإحصائية هو 26.

$$=\frac{260+252+150+192}{30}=\frac{854}{30}=28.67$$

إذن المعدل الحسابي للمتسلسلة الإحصائية هو 28.67.

التمرين الثالث:

(1

(2) لدينا O منتصف القطعة O لدينا O الدينا O الخن $O\overrightarrow{OC} = \overrightarrow{AO}$ الذن O النقطة O بالإزاحة O التي تحول O هي النقطة O بالإزاحة O التي تحول O المناطقة O النقطة O المناطقة O

فإن $\widehat{OCB}'=90^\circ$ (لأن الإزاحة تحافظ على قياس الزوايا) و بالتالي المستقيمين (AC) و (B'D') متعامدان

التمرين الرابع:

$$(AB)$$
 نعتبر المستقيم $y=mx+p$ نعتبر (1

(AB) دينا A نقطتين من المستقيم A

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{-1 - 3}{5 - 1} = \frac{-4}{4} = -1$$
 إذن

p تحديد الأرتوب عند الأصل p

(AB) لدينا A نقطة من المستقيم

$$y_A = -x_A + p$$
 إذن

$$3 = -1 + p$$
 يعنى أن

$$p = 3 + 1$$
يعنى أن

$$p=4$$
 يعنى أن

y=-x+4 هي (AB) هي التالي المعادلة المختصرة للمستقيم

$$y_C - y_A = -4 - 3 = -7$$
 و $x_C - x_A = 8 - 1 = 7$ لدينا (2

(7,-7) هو \overline{AC} هو المتجهة

$$(\Delta)$$
 نعتبر نعتبر $y=m'x+p'$ معادلة مختصرة المستقيم (3

m ' تحديد الميل ₩

$$(\Delta) \perp (AB)$$
 لدينا

$$m' \times m = -1$$
 إذن

$$m \times (-1) = -1$$
 يعني أن

$$m'=1$$
 يعني أن

p 'تحديد الأرتوب عند الأصل \star

 (Δ) لدينا D نقطة من المستقيم

$$y_D = x_D + p$$
 إذن

$$3 = 5 + p$$
' يعني أن

$$p' = 3 - 5$$
يعني أن

$$p' = -2$$
يعني أن

y=x-2و بالتالي المعادلة المختصرة للمستقيم (Δ) هي

$$\frac{y_2 + y_B}{2} = \frac{3 + (-1)}{2} = \frac{2}{2} = 1 \quad \text{o} \quad \frac{x_A + x_B}{2} = \frac{1 + 5}{2} = \frac{6}{2} = 3 \text{ to find the above } 4$$

. (3;1) هو M النقطة المور (3;1)

$$x_M - 2 = 3 - 2 = 1 = y_M$$
 (5)

 (Δ) إذن زوج إحداثيتي النقطة M تحقق المعادلة المختصرة للمستقيم

 (Δ) منتصف القطعة $\begin{bmatrix} AB \end{bmatrix}$ تنتمي إلى المستقيم M

$$(\Delta) \perp (AB)$$
 و بما أن

[AB]فإن المستقيم (Δ) هو واسط القطعة

التمرين الخامس:

$$g(2)=1$$
 $g(0)=0$ $g(0)=5$ $f(0)=3$ (1)

$$g(x) = ax$$
 just (2)

$$g(2)=1$$
 دالة خطية و ا

$$a = \frac{g(2)}{2} = \frac{1}{2}$$
 إذن

$$g(x) = \frac{1}{2}x$$
 وبالتالي

$$f(x) = a'x + b'$$
 نعتبر (3

$$f(-2) = 5$$
 و $f(0) = 3$ و كالم دالة تألفية و

$$a' = \frac{f(-2) - f(0)}{-2 - 0} = \frac{5 - 3}{-2} = \frac{2}{-2} = -1$$
 إذن

b 'تحديد

$$f(0)=3$$
 لدينا 🗱

$$-0+b'=3$$
 يعنى أن

$$b'=3$$
 يعنى أن

$$f(x) = -x + 3$$
 و بالتالي

$$f(-2) = 5$$
لدينا حسب التمثيل المبياني (4

$$-2$$
 هو $f(x) = 5$ هو المعادلة

$$\begin{cases} y = \frac{1}{2}x \\ y = -x + 3 \end{cases} \text{ i.i. } \begin{cases} x - 2y = 0 \\ x + y = 3 \end{cases}$$
 (5)

إذن نلاحظ ان المعادلة الأولى هي المعادلة المختصرة للمستقيم (Δ_2) و المعادلة الثانية هي المعادلة

$$(\Delta_1)$$
المختصرة للمستقيم

 (Δ_{2}) و منه حل النظمة هو زوج إحداثيتي نقطة تقاطع المستقيمين (Δ_{1}) و

التمرين السادس:

$$(ADE)$$
 في المستوى (1

A قائم الزاوية في AME لدينا المثلث

إذن حسب مبرهنة فيثاغورس المباشرة

$$ME^2 = AM^2 + AE^2$$

$$ME^2 = (2cm)^2 + (8cm)^2$$
 يعني أن

$$ME^2 = 4cm^2 + 64cm^2$$
 يعني أن

$$ME^2 = 68cm^2$$
 يعنى أن

$$ME = \sqrt{68cm^2}$$
 ومنه

$$ME = 2\sqrt{17}cm$$
 و بالتالي

$$(MN)/(CD)$$
 نبين أن (ABC) في المستوى (ABC) في المستوى (ABC) لدينا (ABC) و (ABC) و (ABC) الدينا (ABC) و (ABC)

(MN) / /(CD) و بالتالى حسب الشكل و حسب مبر هنة طاليس العكسية

(MN)//(CD) لدينا

$$\frac{MN}{DC} = \frac{AM}{AD}$$
 إذن حسب مبر هنة طاليس المباشرة

$$\frac{MN}{10cm} = \frac{2cm}{6cm}$$
يعني أن

$$MN = \frac{2}{6} \times 10cm$$
 يعني أن

$$MN = \frac{10}{3}cm$$
و بالتالي

$$\frac{1}{3}$$
 × $\left(\frac{EF \times EH}{2}\right)$ × $AE = \frac{1}{3}$ × $\left(\frac{10cm \times 6cm}{2}\right)$ × $8cm = 80cm^3$ لدينا (3)

المستوى: السنة الثالثة الثانوية الإعدادية

المعامل: 03

مدة الإنجاز: ساعتان

الامتحان الجهوي الموحد لنيل شهادة السلك الإعدادي دورة يونيو 2012

وزارة التربية الوطنية الأكاحيمية الجموية للتربية و التكوين ليمة الفاورة ورحيغة

1/2

مادة : الرياضيات

Ns123asco

*يسمع باستعمال الآلة الداسبة غير القابلة للبرمبة

التمرين الأول : (<u>3 ن)</u>

1- حل المعادلتين التاليتين:

6x-5=-2x+3 (i

(x+2)(2x-1)=0

 $\frac{x}{3} - 4 > 0$: على المتراجحة التالية : -2

التمرين الثانيه: (2ن)

يعطى الجدول التالي توزيعا لمساهمات تلاميذ أحد أقسام السنة الثالثة الإعدادية من أجل عمل تضامني .

100	50	40	30	20	10	المساهمة (بالدرهم)
6	7	8	10	6	3	عدد التلاميذ

1- حدد منوال هذه المتسلسلة الإحصائية

2- احسب معدل مساهمات هؤلاء التلاميذ .

احسب النسبة المنوية للتلاميذ الذين ساهموا بأكثر من 43 درهما

التمرين الثالث: (6 ن)

0.5

1.5

1

1

C(4,1) و B(4,6) و A(2,2) النقط (O,I,J)،النقط و المنسوب إلى معلم متعامد ممنظم المنسوب الى معلم متعامد ممنظم المنسوب ا

C أ) مثل في نفس المعم النقط A و B و B

A و B و A بين أن ميل المستقيم (D) المار من النقطتين A و B

C و A المار من النقطتين $y=-\frac{1}{2}x+3$ و و العادلة المختصرة للمستقيم (Δ) المار من النقطتين $y=-\frac{1}{2}x+3$

ABC د) بين أن المستقيمين (D) و (Δ) متعامدان و استنتج طبيعة المثلث 0.75

BC=5 و تحقق من أن \overline{BC} المتجهة \overline{BC} و المتحقق من الن BC=5

C النقطة A' صورة النقطة A بالإزاحة A التي تحول النقطة A إلى النقطة A

0.75 ع) بين أن CAA مثلث قائم الزاوية .

التمرين الرابع: (20)

 $\begin{cases} x-y=1 \\ x-2y=-2 \end{cases}$: حل النظمة التالية -1

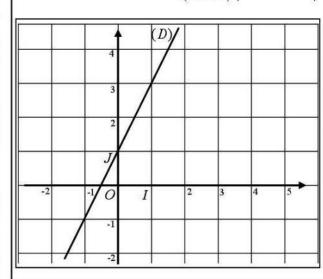
2- للسيد أحمد بنات و أبناء من بينهم حليمة و سعيد .

قالت حليمة : " عدد أخواتي يساوي عدد إخواني "

و قال سعيد : " عدد أخواتي يساوي ضعف عدد آخواني " .

حدد عدد بنات و عدد أبناء السيد أحمد .

2/2


الامتحان الجهوي الموحد لنيل شهادة السلك الإعدادي *دورة يونيو 2012* مادة الرياضيات

التمرين الخامس: (40)

(O,I,J) هو التمثيل المبيائي لدالة تآلفية f في معلم متعامد ممنظم (D) هو المستقيم

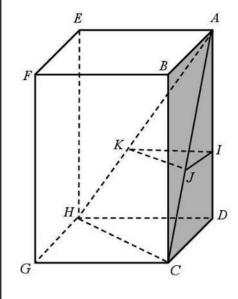
- f أ) حدد مبيانيا صورة العدد f بالدالة
- هي 3 ب) حدد مبيانيا العدد الذي صورته بالدالة f هي 3 م
 - f(x) = 2x + 1: 1
 - g(x) = 3x الدالة الخطية بحيث g الدالة الخطية الدالة الخطية عند -2
 - g(1) **g**(0) **e** (i) 0.5
- ب) أنشئ على ورقتك، في نفس المعلم المتعامد الممنظم، المستقيم (Δ) الممثل للدالة الخطية (Δ)

$$\begin{cases} 3x - y = 0 \\ 2x - y = -1 \end{cases}$$
 : مبيانيا النظمة (ح. 0.5

التمرين المادس: (30)

(بالسنتيمتر) DH=6 و DC=5 و DC=5 و السنتيمتر) DH=6 و DC=5 متوازي المستطيلات قائم بحيث DD=10 و DC=5 و DC=5 المستطيلات قائم بحيث DD=10

الهرم $\frac{3}{5}$ (انظر الشكل) الهرم $\frac{3}{5}$ (انظر الشكل)


- AC = 5√5 : أ) بين أن
 - AJ بسب (ب 0.5

0.5

0.5 L ليكن v حجم الهرم ADCH و V حجم متوازي المستطيلات ABCDEFGH

$$v = \frac{1}{6} \times V$$
 : بین أن

- 3- ليكن ٧ حجم الهرم AIJK
 - ا) اکتب v بدلالة v
- $v' = 10.8 \ cm^3$: ب) تحقق من أن
- .d | 4- احسب الحجم "v" للمجسم 1JKDCH

تصحيح الإمتحان الجهوي 2012 جهة الشاوية ورديغة

التمرين الأول:

$$6x-5=-2x+3$$
 أ- لدينا (1 $6x+2x=3+5$ أي يعني أن $8x=8$ يعني أن $x=\frac{8}{8}$ يعني أن $x=1$ يعني أن $x=1$ يعني أن $x=1$ و بالتالى حل المعادلة هو 1 .

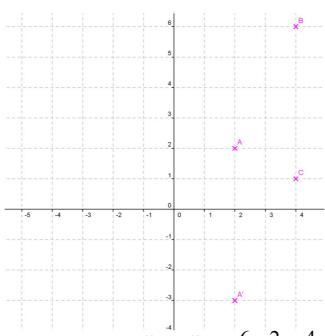
$$(x+2)(2x-1) = 0$$
 ب- لدينا $x+2=0$ أو $2x-1=0$ يعني أن $2x=1$ أو $x=-2$ يعني أن $x=-2$ أو $x=-2$ يعني أن $x=-2$ أو $x=-2$

 $_{0}$ و بالتالي المعادلة $_{0}$ لها حلين هما $_{0}$ و $_{0}$

$$\frac{x}{3} > 4$$
 لدينا (2
$$x > 4 \times 3$$
 يعني أن $x > 12$ يعني أن $x > 12$ يعني أن $x > 12$ وبالتالى جميع الأعدد الأكبر قطعا من 12 هي حلول للمتراجحة.

التمرين الثاني:

إذن معدل مساهمات هؤلاء التلاميذ هو 43 در هم.


$$6+7=14$$
 لدينا عدد التلاميذ الذين ساهموا بأكثر من 43 در هم هو $6+7=14$

$$\frac{14}{40} \times 100 = 35$$
 ولدينا

إذن نسبة التلاميذ الذين ساهموا بأكثر من 43 در هم هي 35%.

التمرين الثالث:

(1

$$\frac{y_B - y_A}{x_B - x_A} = \frac{6 - 2}{4 - 2} = \frac{4}{2} = 2$$
ب) لدينا (ب

. 2 هو B و A المار من النقطنين A و B هو

$$\frac{-1}{2}x_A + 3 = \frac{-1}{2} \times 2 + 3 = -1 + 3 = 2 = y_A$$
 لينا (ج

$$\frac{-1}{2}x_C + 3 = \frac{-1}{2} \times 4 + 3 = -2 + 3 = 1 = y_C$$

 (Δ) و Δ تحققان المعادلة المختصرة للمستقيم A و Δ تحققان المعادلة المختصرة المستقيم

 $y=rac{-1}{2}x+3$ و بالتالي المعادلة المختصرة للمستقيم Δ المار من النقطتين A

$$m_{_\Delta} imes m_{_D} = rac{-1}{2} imes 2 = -1$$
 د) $igstar$ (2

إذن المستقيمان (D) و (Δ) متعامدان.

و نلاحظ أن (D) و (Δ) يتقاطعان في النقطة A و بالتلي المثلث ABC قائم الزاوية \star

. A في الرأس

$$y_{C}-y_{B}=1-6=-5$$
 و $x_{C}-x_{B}=4-4=0$ لدينا $(0;-5)$ لدينا المتجهة \overrightarrow{BC} هي الزوج

الخميس 7 فبراير 2013 المعين في الجبر للإعدادي 2014:34

| المعين في الجبر للإعدادي 20:44:34
| المعين في الجبر للإعدادي 20:44:34
| المعين في الجبر للإعدادي 20:44:34
| المعين في الجبر الإعدادي المعين
$$-2$$
 تحديد المجهولين المناسبين: $x = x$ عدد بنات السيد أحمد. $y = 3$ عدد أولاد السيد أحمد. $y = 3$ النظمة: $x - y = 1$ $x - 2y = -2$ $x - 2y$

تأويل النتائج:

عدد بنات السيد أحمد هو 4 بنات.

عدد أولاد السيد أحمد 3 أولاد.

3- التمرين الخامس:

$$f(0) = 1(^{1} -1)$$

. 1عدد الذي صورته f بالدالة f هو العدد

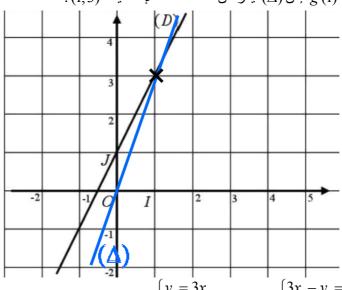
$$f(x) = ax + b$$
 إلدينا $f(x) = ax + b$ إلدينا

. a تحديد قيمة

$$a = \frac{f(1) - f(0)}{1 - 0} = \frac{3 - 1}{1} = \frac{2}{1} = 2$$
لدينا

$$f(x) = 2x + b$$
 إذن

. *b* تحديد قيمة


$$f(0) = 2 \times 0 + b$$
 لدينا

1=b يعني أن

. f(x) = 2x + 1 و بالتالي

$$g(1) = 3 \times 1 = 3$$
 $g(0) = 3 \times 0 = 0$ (1) -2

. (1;3) إذن (Δ) يمر من النقطة ذات الإحداثيات (g(1)=3).

 $\begin{cases} y = 3x \\ y = 2x + 1 \end{cases}$ يعني أن $\begin{cases} 3x - y = 0 \\ 2x - y = -1 \end{cases}$

نلاحظ أن المعادلة الأولى تمثل المعادلة المختصرة للمستقيم (Δ) والمعادلة الثانية تمثل المعادلة المختصرة للمستقيم (D).

 (Δ) و (D) و المعادلة هو زوج إحداثيات نقطة تقاطع المستقيمين

و بالتالي حل النظمة هو الزوج (1;3) .

التمرين السادس:

1- أ) في المستوى ABC

D لدينا ADC قائم الزاوية في

$$AC^{2} = AD^{2} + DC^{2}$$
 (ح.م.ف.م) إذن

 $AC^2 = 10^2 + 5^2$ يعني أن

$$AC^{2} = 125 \stackrel{\text{ij}}{0} \stackrel{\text{yel}}{0}$$

$$AC = \sqrt{125}$$

$$AC = \sqrt{125}$$

$$e = \sqrt{125}$$

$$e = \sqrt{125}$$

$$AJ = \frac{3}{5} \times AC = \frac{3}{5} \times 5\sqrt{5} = 3\sqrt{5}$$

$$V = DC \times DH \times AD \stackrel{\text{ij}}{0} - 2$$

$$v = \frac{1}{3} \times \left(\frac{DC \times DH}{2}\right) \times AD = \frac{1}{6} \times DC \times DH \times AD \stackrel{\text{ij}}{0} - 2$$

$$v = \frac{1}{6}V \stackrel{\text{ij}}{0} - 2$$

$$v' = \frac{1}{6}V \stackrel{\text{ij}}{0} - 2$$

$$v' = \frac{27}{125}v = \frac{27}{125} \times \frac{1}{6}V = \frac{27}{125} \times \frac{1}{6} \times 6cm \times 5cm \times 10cm = 10.8cm^{3} \stackrel{\text{ij}}{0} - 2$$

$$v'' = v - v' = \frac{125}{27}v' - v' = \left(\frac{125}{27} - 1\right)v' = \frac{98}{27}v' = \frac{98}{27} \times 10.8cm^{3} = 39.2cm^{3} \stackrel{\text{ij}}{0} - 2$$

مبادة الزياضيات مدة الإنهاز: ساعتان المعامل: 3

دورة يونيو 2012

رزارة فتربية الوطنية الأعميسية الجهوية للتربية و فتكويس حمة تكسلة عدة

1

1,5

1

1

0,5

0,5

0,5

0,5

1,5

0,75

0,5

0,75

يسمح باستعمال الآلة الحاسية غير المبرمجة

التعرين الأول (4.5 نقط)

- 1) حل المعادلة: 3-2x = 3.
- 2) حـل المتراجعة: (x-2) ≥ 4x-1 (2
 - $\begin{cases} 3x y = 8 \\ 2x 3y = 17 \end{cases}$ (3)
- 4) أدى تاجر مبلغ 460 در هما مقابل 30 كيلوغرام من السكر و 20 لترا من الزيت ، علما أن ثمن اللتر الواحد من الزيت يفوق ثمن كيلوغرامين من السكر بدر همين ، أحسب ثمن لتر واحد من الزيت وثمن كيلوغرام واحد من السكر.

التمرين الثاني (4,5 نقط)

- .g(3) = 1 و g(0) = 3 عدد الدالة التآلفية g بحيث g(0) = 1
- . $g(x) = \frac{-2}{3}x + 3$ و $f(x) = \frac{1}{3}x$ و $g(x) = \frac{1}{3}x$ و $g(x) = \frac{-2}{3}x + 3$ و $g(x) = \frac{-2}{3}x + 3$
 - · ا احسب (6) و (6) .
 - ب) ماهو العدد الذي صورته هي Q بالدالة g ؟
 - ج) حدد زوج إحداثيتي نقطة تقاطع التمثيل المبياني للدالة g مع محور الأراتيب.
 - د) تحقق أن النقطة (3,1) A هي نقطة تقاطع التمثيلين المبيانيين للدالتين f و g .
 - انشئ التمثولين المبياتيين للدالتين f و g في معلم متعامد ممنظم (O,I,J).

التمرين الثلث (2 نقط)

نعتبر المتسلسلة الإحصانية التالية:

30	25	20	15	10	5	الميزة
1	2	5	2	4	4	الحصيص
						مصيص المتراكم

- 1) أتمم جدول هذه المتسلسلة.
- 2) حدد القيمة الوسطية لهذه المتسلسلة.
- 3) احسب المعدل الحسابي لهذه المتسلسلة.

1/2

دورة يونيو 2012

مادة الرياضيات

0,5

0,5

1

0,5

1

0,75

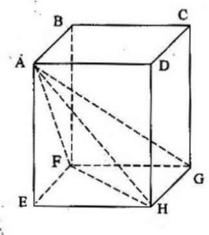
0,5

التمرين الرابع (2 نقط)

ليكن ABCD شبه منحرف بحيث: $\overrightarrow{DC} = 2\overrightarrow{AB}$. و M منتصف القطعة [DC]، و T الإزاحة التي تُحول D إلى M.

- 1) أ) أنشئ شكلا مناسبا ، ثم أنشئ E صورة B بالإزاحة T.
 - 0,5 ب) حدد صورة A وصورة M بالإزاحة T.
 - 0,5 (2) أ) ماهي صورة القطعة [DB] بالإزاحة T ؟
 - ب) بين أن الرباعي AECD متوازي الأضلاع ؟

التمرين الخامس (4 نقط)


(O,I,J) معلم متعامد ممنظم. نعتبر النقط A(-1,2) و B(3,4) و (C(4,2)

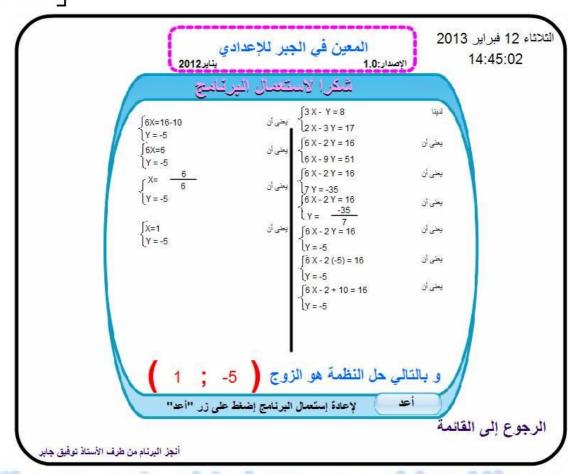
- 0,75 (1) مثل النقط A و B و C في المعلم (O,I,J).
- 2 / 0,75 منتصف القطعة [AB]. حدد زوج إحداثيتي النقطة M.
- $y = \frac{1}{2}x + \frac{5}{2}$ (AB) هي (AB) يَحقَقُ أَن المعادلة المختصرة للمستقيم (AB) هي (3 أور).
- 4) أوجد المعادلة المختصرة المستقيم (Δ) المار من C والموازي المستقيم (AB).
 - 0,5 (3) ا) أحسب المساقتين OC و AB
 - ب) بين أن الرباعي OABC متوازي الأضلاع.

التمرين السادس (3 نقط)

في الشكل جانبه ABCDEFGH متوازي المستطيلات بحيث: EF = EH = 3cm و AE = 4cm

- 1) تحقق أن AF=5cm ، ثم أحسب AG
 - AEFGH حجم الهرم V1 (2
- 3 / 0,75 بين أن حجم الهرم AFGH هو V2=6 cm
- 4) كم سيمسبح حجم الهرم AFGH إذا قمنا يتصغيره
 - $k = \frac{1}{3}$ بنسبة قيمتها

تصحيح الإمتحان الجهوي 2012 (دكالة عبدة)


التمرين الأول:

$$8x - 2 = 3 - 2x$$
 لدينا (1
 $8x + 2x = 3 + 2$ يعني أن $5 = 10x = 5$ يعني أن $x = \frac{5}{10}$ يعني أن $x = \frac{1}{2}$ يعني أن

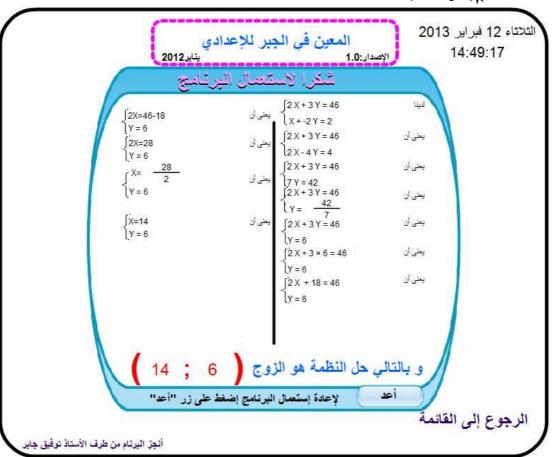
و بالتالي حل المعادلة هو
$$\frac{1}{2}$$
 .

$$4x - 1 \le 2(x - 2)$$
 لدينا (2 $4x - 1 \le 2x - 4$ يعني أن $4x - 2x \le -4 + 1$ يعني أن $2x \le -3$ يعني أن $x \le -\frac{3}{2}$ أن $x \le -\frac{3}{2}$

وبالتالي جميع الأعدد الأصغر من أو تساوي هي حلول للمتراجحة.

موقع الرياضيات و المعلوميات

4) 💥 تحديد المجهولين المناسبين:


تمن اللتر الواحد من الزيت. \dot{x}

ي الكيلوغرام الواحد من السكر y

* صياغة النظمة:

$$\begin{cases} 2x + 3y = 46 \\ x - 2y = 2 \end{cases} \text{ if } \begin{cases} 20x + 30y = 460 \\ x - 2y = 2 \end{cases}$$

* حل النظمة:

* تأويل النتائج:

ثُمن اللتر الواحد من الزيت هو 14. ثمن الكيلوغرام الواحد من السكر هو 3.

التمرين الثاني:

$$g(x) = ax + b$$
 نعتبر (1

$$g$$
 تحديد a معامل الدالة

$$g(0) = 3$$
 و $g(3) = 1$ لدينا

$$a = \frac{g(3) - g(0)}{3 - 0} = \frac{1 - 3}{3 - 0} = \frac{-2}{3}$$
 إذن

$$g(x) = 0$$
 لدينا

$$-\frac{2}{3}$$
×0+ $b=3$ یعني أن

موقع الرياضيات و المعلوميات

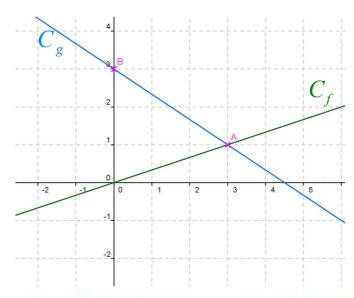
$$b=3$$
 يعني أن $g(x)=-\frac{2}{3}x+3$ و بالتالي $g(x)=-\frac{2}{3}x+3=-1$ (1) $g(x)=-\frac{1}{3}$ (2) $g(x)=0$ يعني أن $g(x)=0$

 $\frac{9}{2}$ وبالتالي العدد الذي صورته g بالدالة و هو

$$g(0) = -\frac{2}{3} \times 0 + 3 = 0 + 3 = 3$$
 لاينا (ج

(0;3) هو الأراتيب و المناب المثل الدالة و مع محور الأراتيب المناب إذن زوج إحداثيات نقطة تقاطع التمثيل للدالة

$$f(3) = \frac{1}{3} \times 3 = 1$$
 (2)


f تنتمي إلى التمثيل المبياني للدالة $A\left(3;1\right)$

$$g(3) = -\frac{2}{3} \times 3 + 3 = -2 + 3 = 1$$
ولدينا

g تنتمي إلى التمثيل المبياني للدالة $A\left(3;1\right)$

. g و f هي نقطة تقاطع التمثيلين المبيانيين للدالتين f و g

B(0;3) و النقطة A(3;1) و النقطة g هو المستقيم المار من النقطة A(3;1) و النقطة g التمثيل المبياني للدالة f هو المستقيم المار من النقطة f و النقطة f

التمرين الثالث:

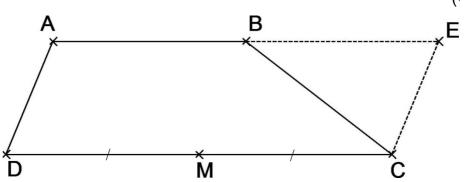
(1

30	25	20	15	10	5	الميزة
1	2	5	2	4	4	الحصيص
18	17	15	10	8	4	الحصيص المتراكم

$$\frac{18}{2} = 9$$
 لدينا (2

إذن أصغر حصيص أكبر من أو يساوي 9 هو 10 الموافق للميزة 15.

وبالتالي القيمة الوسطية للمتسلسلة الإحصائية هي 15.


*
$$\frac{5 \times 4 + 10 \times 4 + 15 \times 2 + 20 \times 5 + 25 \times 2 + 30 \times 1}{18}$$
 دينا (3

$$= \frac{20+40+30+100+50+30}{18} = \frac{270}{18} = 15$$

إذن المعدل الحسابي للمتسلسلة الإحصائية هو 15.

التمرين الثالث:

((1

- ب) \bigstar صورة النقطة A بالإزاحة T هي النقطة B
- . C مسورة النقطة M بالإزاحة T هي النقطة
- . M النقطة M بالإزاحة M هي النقطة M

. E هي النقطة B بالإزاحة T هي النقطة

. [ME] بالإزاحة T هي القطعة ال المحافظة المح

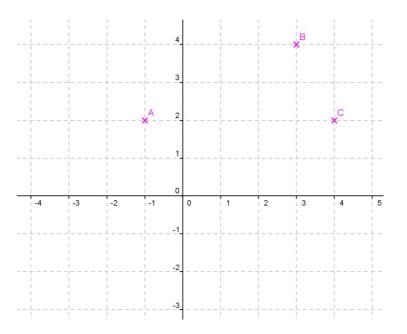
E بالإزاحة T هي النقطة B بالإزاحة النقطة

$$(a)$$
 $\overrightarrow{BE} = \overrightarrow{DM}$ إذن

B ولدينا صورة النقطة A بالإزاحة T هي النقطة

$$(b)$$
 $\overrightarrow{AB} = \overrightarrow{DM}$ إذن

 $\overrightarrow{AB} + \overrightarrow{BE} = \overrightarrow{DM} + \overrightarrow{DM}$ من (a) من (b) من (a)


$$\overrightarrow{AE} = 2\overrightarrow{DM}$$
 وهذا يعني أن

و بما أن النقطة M منتصف القطعة [CD] و بما أن النقطة المنتصف القطعة M

$$\overrightarrow{AE}=\overrightarrow{DC}$$
 فإن \overrightarrow{AECD} متوازي أضلاع.

التمرين الخامس:

(1

$$\frac{y_2+y_B}{2} = \frac{4+2}{2} = \frac{6}{2} = 3$$
 و $\frac{x_A+x_B}{2} = \frac{-1+3}{2} = \frac{2}{2} = 1$ لدينا (2 . (1;3) هو M هو أذن زوج إحداثيات النقطة M

$$\frac{1}{2}x_{B} + \frac{5}{2} = \frac{1}{2} \times 3 + \frac{5}{2} = \frac{3}{2} + \frac{5}{2} = \frac{8}{2} = 4 = y_{B}$$
 لدينا (3)
$$\frac{1}{2}x_{A} + \frac{5}{2} = \frac{1}{2} \times (-1) + \frac{5}{2} = -\frac{1}{2} + \frac{5}{2} = \frac{4}{2} = 2 = y_{A}$$
 ولدينا (3)

$$y = \frac{1}{2}x + \frac{5}{2}$$
 إذن إحداثيات النقطتين A و B تحققان المعادلة المختصرة

.
$$y = \frac{1}{2}x + \frac{5}{2}$$
 هي (AB) وبالتالي المعادلة المختصرة للمستقيم

$$(\Delta)$$
 نعتبر $y=mx+p$ نعتبر (4

$$\left(\Delta\right)//(AB$$
) لدينا

$$m = \frac{1}{2}$$
 إذن

$$p$$
 تحديد الأرتوب عند الأصل \bigstar

 (Δ) لدينا C نقطة من المستقيم

$$y_C = \frac{1}{2}x_C + p$$
اِذن

$$2 = \frac{1}{2} \times 4 + p$$
یعني أن

2 = 2 + pيعنى أن

$$p=0$$
 و بالتالي المعادلة المختصرة للمستقيم (Δ) هي $y=\frac{1}{2}x$ هي (Δ) المعادلة المختصرة المستقيم (Δ) المعادلة المختصرة المستقيم (Δ) عي $y=\frac{1}{2}x$ و بالتالي المعادلة المختصرة المستقيم (Δ) عي Δ 0 = $\sqrt{(3-(-1))^2+(4-2)^2}=\sqrt{4^2+2^2}=\sqrt{16+4}=\sqrt{20}=2\sqrt{5}$ (Δ 0 = $\sqrt{(x_C-x_O)^2+(y_C-y_O)^2}=\sqrt{(4-0)^2+(2-0)^2}=\sqrt{4^2+2^2}=\sqrt{16+4}=\sqrt{20}=2\sqrt{5}$ (Δ 0) لدينا المعادلة المختصرة المستقيم (Δ 1) يمر من النقطة (Δ 2) مي المعادل المعلم (Δ 3) يمر من النقطة (Δ 4) من المعلم (Δ 5) و (Δ 7) مستقيمان منطبقان (Δ 6) و (Δ 7) مستقيمان منطبقان (Δ 8) و (Δ 8) من المعلم (Δ 8) و (Δ 9) من المعلم (Δ 9) و (Δ 9) من المعلم (Δ 9) و (Δ 9) من المعلم (Δ 9) و (Δ 9) من المعلم (Δ 9) (Δ 9) من المعلم (Δ 9) المعلم (Δ 9) (Δ 9) (Δ 9) المعلم (Δ 9) (Δ 9) المعلم (Δ 9) (Δ 9) (Δ 9) المعلم (Δ 9) (Δ 9) (Δ 9) المعلم (Δ 9) (Δ 9) (Δ 9) المعلم (Δ 9) (Δ 9) (Δ 9) (Δ 9) المعلم (Δ 9) (Δ 9) (Δ 9) (Δ 9) المعلم (Δ 9) (Δ 9

التمرين السادس:

$$AF$$
سستوی (1 (AEF) في المستوى المستوى (AEF) في المستوى المستوى المباشرة لذينا AEF مثلث قائم الزاوية في AEF الذينا حسب مبر هنة فيثاغورس المباشرة المباشرة $AF^2 = AE^2 + EF^2$ $AF^2 = (4cm)^2 + (3cm)^2$ يعني أن $AF^2 = 16cm^2 + 9cm^2 = 25cm^2$ ومنه $AF = 5cm$ ومنه $AF = 5cm$ في المستوى (AFG) في المستوى (AFG) في المستوى المباشرة الزاوية في AFG الدينا AFG مثلث قائم الزاوية في AFG الدينا AFG A

$$\frac{1}{3} \times \left(\frac{GH \times GF}{2}\right) \times AE = \frac{1}{3} \times \left(\frac{3cm \times 3cm}{2}\right) \times 4cm = 6cm^3$$
 لينا (3

. $6cm^3$ هو AFGH المرم

$$\left(\frac{1}{3}\right)^3 \times 6 = \frac{1}{27} \times 6 = \frac{6}{27} = \frac{2}{9}$$
 ليپنا (4

 $\frac{2}{9}$ ردن حجم الهرم بعد التصغير هو إذن حجم الهرم بعد التصغير الهرم بعد التصغير الهرم
المملكة المغربية + «አሃΑΛξΗ Ι ΗΚΡΟΣΘ ورزارة التربية الراكمية الأكانيمية الجهوية للسلترية والتكوين جهة موص ماسة بزكة + «««ΛΣΣΕΗ 1 ΙΘΧΣΕΛ Λ ΣΟΣΙΗΧ + «ΟΧ» Ι ΘΟΟ Σ.ΘΟ» «Λο»

الامتحان الجهوي الموحد لنيل شهادة السلك الإعدادي دورة يونيو 2012

التعليم العام - التعليم الأصيل (الرسميون والأحرار)

المعامل: 3	مدة الإنجاز : 2 س	السريساضيسات	المادة:
------------	-------------------	--------------	---------

استعمال المحسبة غير مسموح به	
التمرين الأول :	<u>4 نقط</u>
$\frac{x}{2} - \frac{x}{3} = 1$! $x - 3 = 0$: حل المعادلتين (1	1,5
3x - 7 > 2x + 1 : حل المتراجحة (2	1
$\begin{cases} 3x - 2y = 2 \\ x - 2y = 1 \end{cases}$: 3	1,5
التمرين الثاني:	<u>5,5 نقط</u>
المستوى منسوب لمعلم متعامد ممنظم (O,I,J) . نعتبر النقط $A(4,2)$ و $B(3,-1)$ و $B(3,-1)$.	
1) احسب إحداثيتي I منتصف القطعة [BC] .	0,5
2) حدد المعادلة المختصرة للمستقيم (AB).	1
3) أنشئ النقط A و B و C و I .	1
4) لتكن t الإزاحة التي تحول I إلى B.	
أ) تحقق من أن النقطة $J(6,0)$ هي صورة A بالإزاحة t .	1
ب) أنشئ (L) صورة (AB) بالإزاحة t.	1
5) حدد المعادلة المختصرة للمستقيم (L).	1
التمرين الثالث:	<u>3 نقط</u>
$AB=6\sqrt{2}$ هرم قاعدته المربع $ABCD$ وارتفاعه SH بحیث H مرکز $ABCD$ و SABCD	
S_{Λ} . $SH = 8$	
1) احسب حجم الهرم SABCD .	1
2) احسب SA احسب (2	1
$\int_{\mathcal{D}} \int_{\mathcal{C}} \int_{\mathcal{C}} k$ نعتبر الهرم SA'H'B' والهرم 'SA'H'B' تكبيره بنسبة (3	
A علما أن حجم الهرم 'SA'H'B' يساوي 384 . R يساوي R احسب	1

التعليم العام - التعليم الأصيل (الرسميون والأحرار)

2	المرفحة	المه ضه ع	وي الموحد لنيل شهادة السلك الإعدادي _ دورة يونيو 2012	الامتحان الجهو
2		اعوصوح	الرياضيات	المادة:

5 نقط التمرين ال	الدابع .							
	المستوى منسوب لمعلم متعامد ممنظم (O, I, J) .							
		1		E(-2				
	اً الله خطية تمثيلها المبياني (D) يمر من النقطة (E(-2 , -3).							
	f حدد صيغة							
		2) 1						
2007	$a=-rac{2}{3}$ الة تآلفية معاملها.	(3) = -1	. g(
1	i) حدد صيغة g.							
1 ب) أ	ب) أنشئ التمثيل المبياني (Δ) للدالة g في نفس المعلم $(0,{ m I},{ m J})$.							
1 (3) نعتبر	. EFG نعتبر النقطة $F(3,-1)$ والنقطة G تقاطع (D) و (D) . حدد طبيعة المثلث $(3,-1)$							
2,5 نقط التمرين ال	التمرين الخامس:							
يمثل	، الجدول التالي عدد المبيعان	من منتوج	A بمتجر خلا	ل مدة 30 يو	. ما			
	عدد المبيعات في اليوم	0	10	12	15	20		
	عدد الأيام	2	10	5	6	7		
1 أعط	لل جدول الحصيصات المتراك	مة.						
2,0 حدد ا	2) حدد القيمة الوسطية لهذه المتسلسلة الإحصائية.							
1 (3) إذا عا	علمت أن المعدل اليومي لمد	خيل المبيع م	ن المنتوج	A هو 430	ء 1 در هم، فا ح	سب أعلى مد		
	- 7: 11 (i.e. · 11		177		120			
پوسی	ي للمبيع من هذا المنتوج.							

تصحيح الإمتحان الجهوي 2012 (سوس ماسة درعة)

التمرين الأول:

$$x-3=0$$
 لدينا $x-3=0$ لدينا $x=3$ و يعني أن $x=3$ و يعني أن $x=3$ و بالتالي حل المعادلة هو $x=3$ حل المعادلة $x=3$ حل المعادلة $x=3$ الدينا $x=3$ x

حلول المتراجحة

أنجز البرنام من طرف الأستاذ توفيق جابر

x > 8 يعني أن x > 8 وبالتالي جميع الأعدد الأكبر قطعا من x > 8 هي حلول للمتراجحة.

الجمعة 22 فبراير 2013 المعين في الجبر للإعدادي 17:18:39

| 10:18:39 | | 10:18:39 | | 17:18:39 |

التمرين الثاني:

$$\frac{y_B + y_C}{2} = \frac{-1+3}{2} = \frac{2}{2} = 1$$
 و $\frac{x_B + x_C}{2} = \frac{3+(-1)}{2} = \frac{2}{2} = 1$ لاينا (1

. (1;1) هو [BC] منتصف القطعة و [BC] هو النقطة

$$(AB)$$
 نعتبر المستقيم $y = mx + p$ نعتبر (2

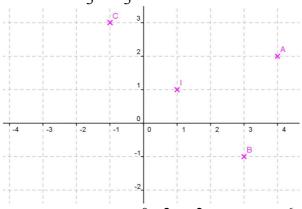
(AB) لدينا A و B نقطتين من المستقيم

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{3 - 4}{-1 - 2} = \frac{-1}{-3} = \frac{1}{3}$$
 (i.i.)

p تحديد الأرتوب عند الأصل *

(AB) لدينا A نقطة من المستقيم

$$y_A = \frac{1}{3}x_A + p$$
اِذن


$$2 = \frac{1}{3} \times 2 + p$$
یعني أن

$$2 = \frac{2}{3} + p$$
یعني أن

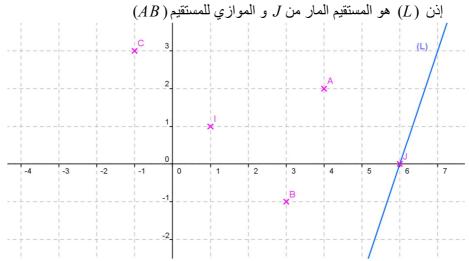
$$p=2-\frac{2}{3}$$
يعني أن

$$p = \frac{4}{3}$$
يعني أن

$$y=rac{1}{3}x+rac{4}{3}$$
و بالتالي المعادلة المختصرة للمستقيم (AB) هي (3

$$y_J - y_A = 0 - 2 = -2$$
 و $x_J - x_A = 6 - 4 = 2$ لينا (4)

$$(2;-2)$$
 هو \overrightarrow{AJ} إذن زوج إحداثيتي


$$y_B - y_I = -1 - 1 = -2$$
 و $x_B - x_I = 3 - 1 = 2$ لدينا

$$(2;-2)$$
 هو \overline{IB} إذن زوج إحداثيتي

$$\overrightarrow{AJ} = \overrightarrow{IB}$$
 و هذا يعنى أن

. t النقطة J(6;0) هي صورة النقطة A بالإزاحة

$$J$$
ب) لدينا صورة A بالإزاحة t هي J

$$(L)$$
 نعتبر نعتبر $y=m'x+p'$ معادلة مختصرة المستقيم (5

$$(AB)//(L)$$
 لدينا

$$m'=m$$
 إذن

$$m' = \frac{1}{3}$$
 يعني أن

$$p$$
 'تحديد

$$(L\,)$$
لدينا J نقطة من المستقيم

$$y_J = \frac{1}{3}x_J + p'$$
 إذن

$$0 = \frac{1}{3} \times 6 + p$$
' يعني أن

$$0 = 2 + p$$
' يعني أن

$$p'=-2$$
 يعنى أن

$$y = \frac{1}{3}x - 2$$
 و بالتالي المعادلة المختصرة للمستقيم (L) هي

التمرين الثالث:

$$\frac{1}{3} \times AB^2 \times SH = \frac{1}{3} \times (6\sqrt{2})^2 \times 8 = \frac{1}{3} \times 72 \times 8 = 192$$
 ليينا (1

$$(ABC)$$
في المستوى

$$AC^2 = AB^2 + BC^2$$
إذن حسب مبر هنة فيثاغورس المباشرة

$$AC^2 = (6\sqrt{2})^2 + (6\sqrt{2})^2$$
يعنى أن

$$AC^2 = 72 + 72$$
يعني أن

$$AC^2 = 144$$
يعنى أن

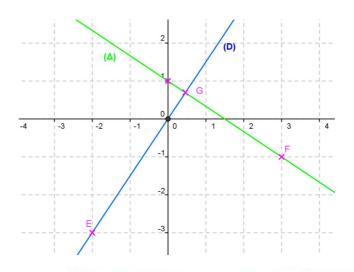
$$AC = \sqrt{144}$$
 ومنه

$$AC = 12$$
 وبما أن H منتصف $AC = 12$ (لأن H مركز المربع $AH = 6$ فإن $AH = 6$ فإن $AH = 6$ فإن $AH = 6$ في المستوى $AH = 6$ في المستوى $AH = 6$ الدينا المثلث $AH = 6$ الدينا المثلث $AH = 6$ قائم الزاوية في $AH = 6$ الدينا المثلث $AH = 6$ قائم الزاوية في $AH = 6$ الدينا المثلث $AH = 6$ قائم الزاوية في $AH = 6$ الدينا $AH = 6$ المنافث $AH = 6$ الدينا $AH = 6$ المنافث $AH = 6$

$$V' = k^3 \times V$$
 لدينا

$$k^3 = \frac{V'}{V}$$
 إذن

$$k^3 = \frac{384}{48}$$
يعني أن


$$k^3=8$$
 يعني أن

$$k=2$$
 ومنه

. وبالتالي نسبة التكبير
$$k$$
 هي 2

التمرين الرابع:

(الله خطية) أ) المستقيم (D) يمر من النقطة E و يمر من النقطة O أصل المعلم (E دالة خطية)

$$f(x) = a'x$$
 بنعتبر $f(x) = a'x$ لدينا حسب التمثيل المبياني $f(-2) = -3$ لدينا حسب التمثيل المبياني $a' = \frac{f(-2)}{-2} = \frac{-3}{-2} = \frac{3}{2}$ إذن $f(x) = \frac{3}{2}x$ وبالتالي $g(x) = ax + b$ يعتبي أن $g(x) = ax + b = -1$ يعنبي أن $-2 + b = -1$ يعنبي أن $-2 + b = -1$ و بالتالي $a' = -\frac{2}{3}x + 1$ و بالتالي $a' = -\frac{2}{3}x + 1$ و بالتالي $a' = -\frac{2}{3}x + 1$ و بالتالي المبياني $a' = -\frac{2}{3}x + 1$ لدين التمثيل المبياني $a' = -\frac{2}{3}x + 1$ النقطة المبياني $a' = -\frac{2}{3}x + 1$

إذن التمثيل المبياني (Δ) للدالة g يمر من النقطة التي زوج إحداثيتها هو (1-3) و النقطة التي

((أ (الشكل 1) أ). (0;1) هو (وج إحداثيتها هو

$$-rac{2}{3}$$
 هو Δ هو المستقيم (Δ) هو $\frac{3}{2}$ و ميل المستقيم (Δ) هو (Δ

$$-\frac{2}{3} \times \frac{3}{2} = -1$$
 و بما أن

$$(\Delta) \perp (D)$$
 فإن

$$(EF) \perp (EG)$$
 ومنه

. G قائم الزاوية في EFG .

التمرين الخامس

1) جدول الحصيصات المتراكمة

20	15	12	10	0	عدد المبيعات في اليوم
7	6	5	10	2	عدد الأيام
30	23	17	12	2	الحصيص المتراكم

$$\frac{30}{2}$$
 = 15 لدينا (2

إذن أصغر حصيص أكبر من أو يساوي 15 هو 17 الموافق للميزة 12.

و منه القيمة الوسطية للمتسلسلة الإحصائية هي 12.

نعتبر x ثمن المنتوج A فنحصل على الجدول التالى:

20	15	12	10	0	عدد المبيعات في اليوم
7	6	5	10	2	عدد الأيام
20 <i>x</i>	15x	12 <i>x</i>	10x	0	المدخول اليومي

لدينا المعدل اليومي لمداخيل بيع المنتوج
$$A$$
 هو 1430 در هم
$$\frac{0\times2+10x\times10+12x\times5+15x\times6+20x\times7}{30}=1430$$
 إذن $1430=\frac{100x+60x+90x+140x}{30}=1430$ يعني أن $1430=\frac{390x}{30}=1430$ يعني أن $13x=1430$ ومنه ثمن بيع المنتوج $13x=1430$ هو 110 در هم ومنه ثمن بيع المنتوج $13x=110$ در هم وبالتالي أعلى مدخول يومي لمبيع المنتوج $13x=110$ هو 2200 در هم.