المخروطيات <u>المنحنيات</u> من الدرجة الثانية

ال 1: الطريقة الأولى تعتمد على تغيير المعلم بتغيير الأساس

. $(E) = \{M(x,y) \in P/5x^2 + 5y^2 + 6xy - 8 = 0\}$: نعتبر المجموعة : (O,\vec{i},\vec{j}) ؛ نعتبر المجموعة :

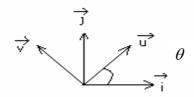
.
$$\vec{v} = -\frac{\sqrt{2}}{2}\vec{i} + \frac{\sqrt{2}}{2}\vec{j}$$
 و $\vec{u} = \frac{\sqrt{2}}{2}\vec{i} + \frac{\sqrt{2}}{2}\vec{j}$: نعتبر المتجهتين : \mathbf{V}_2 و نعتبر المتجهتين :

. (E) في المعلم (O , \vec{u} , \vec{v}) في المعلم (E) في المعلم المنتج طبيعة المنحنى (E).

. (O,\vec{i},\vec{j}) في المعلم (E) في المعلم 2.

الحل : تذكير :

: فإن (\vec{i},\vec{u}) و (\vec{i},\vec{u}) و (\vec{i},\vec{u}) و (\vec{i},\vec{u}) و (\vec{i},\vec{j}) و أساسان متعامدان ممنظمان حيث



 $\vec{v} = -\sin(\theta)\vec{i} + \cos(\theta)\vec{j}$ $\vec{u} = \cos(\theta)\vec{i} + \sin(\theta)\vec{j}$

.
$$\vec{v} = -\sin\left(\frac{\pi}{4}\right)\vec{i} + \cos\left(\frac{\pi}{4}\right)\vec{j} = \frac{\sqrt{2}}{2}\left(-\vec{i} + \vec{j}\right)$$
 و $\vec{u} = \cos\left(\frac{\pi}{4}\right)\vec{i} + \sin\left(\frac{\pi}{4}\right)\vec{j} = \frac{\sqrt{2}}{2}\left(\vec{i} + \vec{j}\right)$ في المثال ؛ لدينا

. xy على الحد الحد (E) عير محتوية على الحد $\theta=\frac{\pi}{4}$

1. نعتبر M نقطة من المستوى P بحيث:

لدينا

ومنه فإن:

. $\left(O,\vec{u},\vec{v}\right)$ هو زوج إحداثيتي النقطة M بالنسبة للمعلم $\left(O,\vec{i},\vec{j}\right)$ و $\left(O,\vec{i},\vec{j}\right)$ هو زوج إحداثيتي النقطة النقطة المعلم $\left(X,Y\right)$

$$\overrightarrow{OM} = x \vec{i} + y \vec{j} = X \vec{u} + Y \vec{v} \iff x \vec{i} + y \vec{j} = \frac{\sqrt{2}}{2} X (\vec{i} + \vec{j}) + \frac{\sqrt{2}}{2} Y (-\vec{i} + \vec{j})$$

$$\begin{cases} x = \frac{\sqrt{2}}{2}(X - Y) \\ y = \frac{\sqrt{2}}{2}(X + Y) \end{cases}$$

$$M \in (E) \iff 5x^2 + 5y^2 + 6xy - 8 = 0$$

$$\Leftrightarrow \frac{5}{2}(X - Y)^2 + \frac{5}{2}(X + Y)^2 + \frac{6}{2}(X - Y)(X + Y) - 8 = 0$$

$$\Leftrightarrow 5(X^2 - 2XY + Y^2) + 5(X^2 + 2XY + Y^2) + 6(X^2 - Y^2) - 16 = 0$$

$$\Leftrightarrow 16X^2 + 4Y^2 - 16 = 0$$

$$\Leftrightarrow \frac{\overline{X^2} + \overline{Y^2}}{1^2} = 1$$

3

. B'(0,-2) و B(0,2) و A'(-1,0) هي A(1,0): هي A(1,0): هي A(1,0): ورؤوسه بالنسبة للمعلم للمعلم A'(0,-2):

لدينا : a = 1 ومنه فإن بؤرتي الإهليليج a < b فإن a < b بالنسبة للمعلم لدينا : a = 1

.
$$(D'):Y=-rac{4\sqrt{3}}{3}$$
 و $(D):Y=rac{4\sqrt{3}}{3}$: ودلیلاه هما $F'\Big(0-\sqrt{3}\Big)$ و $F\Big(0,\sqrt{3}\Big)$ هما (D,\vec{u},\vec{v})

.
$$e = \frac{c}{h} = \frac{\sqrt{3}}{2}$$
 تباعده المركزي هو

: ويما أن :
$$\begin{cases} X = \frac{\sqrt{2}}{2}(x+y) \\ Y = \frac{\sqrt{2}}{2}(-x+y) \end{cases} : فإن : \begin{cases} x = \frac{\sqrt{2}}{2}(X-Y) \\ y = \frac{\sqrt{2}}{2}(X+Y) \end{cases}$$

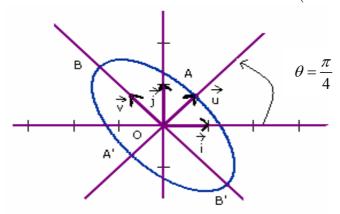
.
$$B'\left(\sqrt{2},-\sqrt{2}
ight)$$
 و $B\left(-\sqrt{2},\sqrt{2}
ight)$ و $A'\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}
ight)$ و $A\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}
ight)$: رؤوس A'

.
$$F'\!\left(rac{\sqrt{6}}{2},-rac{\sqrt{6}}{2}
ight)$$
 و $F\!\left(-rac{\sqrt{6}}{2},rac{\sqrt{6}}{2}
ight)$: بؤرتي E

$$(D')$$
: $\frac{\sqrt{2}}{2}(x+y) = \frac{4\sqrt{3}}{3}$ و (D) : $\frac{\sqrt{2}}{2}(-x+y) = \frac{4\sqrt{3}}{3}$: ليلا (E)

$$(D')$$
: $x + y = \frac{4\sqrt{6}}{3}$ و (D) : $-x + y = \frac{4\sqrt{6}}{3}$: فِي

 $:\left(O\,,ec{i}\,,ec{j}\,
ight)$ انشاء الإهليليج $\left(E\,
ight)$ في المعلم



مثال 2 : الطريقة الثانية تعتمد على الدوران

 $(E) = \left\{ M \left(x \, , y \, \right) \in \mathsf{P} \, / \, 5x^{\, 2} + 5y^{\, 2} + 6xy - 8 = 0 \right\} \ \text{is a print}, \ \text{ the print} \ \left(O \, , \vec{i} \, , \vec{j} \, \right)$ ونعتبر الدوران R الذي مركزه $O \left(0 \, , 0 \, \right)$ وزاويته $\theta = \frac{\pi}{4}$.

. $\left[R\left(E\right)
ight]$ معادلة ديكارتية للمجموعة $\left[R\left(E\right)
ight]$ في المعلم $\left(O,\overrightarrow{i},\overrightarrow{j}
ight)$ ثم استنج طبيعة المجموعة $\left[R\left(E\right)
ight]$

 (O,\vec{i},\vec{j}) مدد طبيعة المجموعة (E) ثم أنشئها في المعلم.

الحل: لتكن M نقطة من المستوى P بحيث:

و روح إحداثيتي النقطة M'=R بالنسبة للمعلم M'=R بالنسبة للمعلم M'=R هو زوج إحداثيتي النقطة M'=R بالنسبة للمعلم M'=R بالنسبة للمعلم M'=R

: لدينا لدينا . (O, \vec{u}, \vec{v})

$$M' = R(M) \Leftrightarrow \begin{cases} X = \cos\left(\frac{\pi}{4}\right)x - \sin\left(\frac{\pi}{4}\right)y \\ Y = \sin\left(\frac{\pi}{4}\right)x + \cos\left(\frac{\pi}{4}\right)y \end{cases} \Leftrightarrow \begin{cases} X = \frac{\sqrt{2}}{2}(x-y) \\ Y = \frac{\sqrt{2}}{2}(x+y) \end{cases} \Leftrightarrow \begin{cases} x = \frac{\sqrt{2}}{2}(X+Y) \\ y = \frac{\sqrt{2}}{2}(-X+Y) \end{cases}$$

$$\begin{cases} X = \cos(\theta)x - \sin(\theta)y \\ Y = \sin(\theta)x + \cos(\theta)y \end{cases}$$
 : هي $R(O,\theta)$ للدوران $R(O,\theta)$ الصيغة التحليلية للدوران

محمد الحيان -2 - 2 . ب . ع . ريا . 3

: ومنه فإن $M'(X,Y) \in R(E)$ لينا $M'(X,Y) \in R(E)$ ومنه فإن

$$\begin{cases} x = \frac{\sqrt{2}}{2}(X + Y) \\ y = \frac{\sqrt{2}}{2}(-X + Y) \end{cases}$$

$$5x^{2} + 5y^{2} + 6xy - 8 = 0$$

$$5 \times \frac{1}{2} (X + Y)^2 + 5 \times \frac{1}{2} (-X + Y)^2 + 6 \times \frac{1}{2} (X + Y) (-X + Y) - 8 = 0$$
 : $\frac{1}{2} (X + Y)^2 + 6 \times \frac{1}{2} (X + Y) (-X + Y) - 8 = 0$

$$5(X^2 + Y^2 + 2XY) + 5(X^2 + Y^2 - 2XY) + 6(Y^2 - X^2) - 16 = 0$$
 : $ightharpoonup$

$$O\left(0,0
ight)$$
 يكافئ : $\left(E'\right)=R\left(E
ight)$ ومنه فإن : $\left(R\left(E
ight)
ight]$ ومنه فإن : $\left(R\left(E
ight)
ight]$ ومنه فإن : $\left(R\left(E
ight)
ight]$

ولدينا :
$$c = \sqrt{a^2 - b^2} = \sqrt{2^2 - 1^2} = \sqrt{3}$$
 ؛ لدينا : $a = 2$ و النسبة للمعلم $a = 2$ ؛ لدينا :

.
$$B'(0,-1)$$
 و $B(0,1)$ و $B(0,1)$ و $B'(0,-1)$.

.
$$B'(0,-1)$$
 و $B(0,1)$ و $A'(-2,0)$ و $A(2,0)$: رؤوس (E') هي $F'(-\sqrt{3},0)$ و $F(\sqrt{3},0)$:

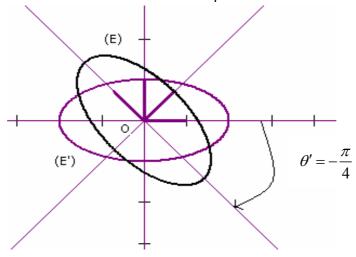
.
$$e=\frac{c}{a}=\frac{4\sqrt{3}}{3}$$
 : هو (E') هو التباعد المركز للإهليليج

$$(D'): x = -\frac{4\sqrt{3}}{3}$$
 وليلا $(E'): x = \frac{4\sqrt{3}}{3}$:

 $:\left(O,\overrightarrow{i},\overrightarrow{j}
ight)$ في المعلم (E) في المجموعة 2.

لدينا :
$$(E')$$
 هو أيضا إهليليج يستنج من (E') وبما أن (E') إذن : (E') الإن : (E') هو أيضا إهليليج يستنج من (E')

: کما یلي $\theta' = -\frac{\pi}{4}$ بالدور ان الذي مرکزه $O\left(0,0\right)$ وزاويته $\left(E'\right)$ کما یلي



3