کیمیاء تمارین 06 Transformations spontanées dans les piles , bilan énergétique	2 بـاك عـلـوم Transfo	التحولات التلقائية في الأعمدة وتحصيل الطاقة ormations spontanées dans les piles , bilan énergétique	كىمىاء تمارىن 06
--	--------------------------	--	------------------

الموضوع 04

ندرس عمودا مكونا من الأجزاء التالية:

- Ag^+ ي الحجم V=100mL من محلول مائي لأيونات Ag^+ تركيزها الحجم V=100mL من محلول مائي الأيونات
- . $\left[Zn^{2+}\right]_{l}=0,10mol.L^{-1}$ تركيزها Zn^{2+} تركيزها V=100mL من محلول مائي لأيونات Zn^{2+}
 - ـ قنطرة أيوية لنترات البوتاسيوم.

حجم كل صفيحة فلزية هو v=10cm³ .القوة الكهرمحركة للعمود E=1,50V ،نعتبرها ثابتة خلال الاشتغال،نمثل العمود $Zn(s)/Zn^{2+}(aq)//Ag^{+}(aq)/Ag(s)$ كالتالي:

I التطور التلقائي للمجموعة:

1.أكتب المعادلة الحصيلة للتفاعل في العمود باختيار منحى اعتباطيا. .2

2.1. أحسب خارج التفاعل البدئي Q_{r,i} .

- 2.2.خارج التفاعل عند التوازن لتفاعل فلز الزنك مع أيونات الفضة(I) هو K=1.10⁵² .استنتج منحى التطور التلقائي للمجموعة الكيميائية. 🖷
 - 2.3.ما هو الاستنتاج الآخر الذي يمكن اسنباطه من قيمة K ؟
 - 2.4.أكتب المعادلة الكيميائية في المنحى الفعلي للتفاعل التلقائي.
 - 2.5. استنتج التفاعلات عند الإلكترودين.
 - 2.6.حدد طبيعة الآنود و الكاثود.

II اشتغال العمود:

- 1.1. ماهي قطبية كل إلكترود؟
- 1.2. نركب جهاز أمبيرمتر في الدارة الخارجية للعمود.قطبه‹‹♠›› مرتبط بصفيحة الفضة وقطبه ‹‹com›› مرتبط بصفيحة الزنك.أعط إشارة شدة التيار التي تظهر على شاشة الأمبيرمتر.

- 2.1. أعط العلاقة بين التوتر U بين قطبي العمود وقوته الكهرمحركة E ومقاومته الداخلية r و شدة التيار I .
- 2.2.عندما نربط الصفيحتين بسلك موصل بدون مقاومة (الدارة القصيرة) ،نلاحظ أن شدة التيار تأخذ القيمة I=15m*A* . استنتج قيمة المقاومة الداخلية للعمود r
 - Ω . يُغذي العمود دارة مقاومية ،مقاومتها الداخلية Ω 8-150.
 - 3.1. أعط تعبير U بطريقتين مختلفتين ،واستنتج قيمة شدة التيار الذي يمر في الدارة
 - 3.2.أحسب قيمة التوتر U بين قطبي العمود أثناء الاشتغال.قارن U مع E .هل هذه الحالة عامة؟

<u>III كمية الكهرباء :</u>

- 1.1. أنجز جدولا وصفيا لتطور المجموعة في العمود.
 - 1.2. حدد المتفاعل المحد.
- 2. أحسب قيمة كمية الكهرباء Q التي تمر في الدارة خلال المدة t=5h من الاشتغال.
 - استنتج تركيز أيونات ⁴Aq و *Zn² بعد المدة t=5h من اشتغال العمود.
- أحسب المدة التي يمكن فيها للعمود أن يُغذي الدارة إذا اعتبرنا ضياع %5 من كمية الكهرباء.
 - أحسب تركيز أيونات †Ag و *Zn² عندما يتوقف العمود عن الاشتغال.

 $M(Aq)=107,9q.mol^{-1}$ $M(Zn)=65,4q.mol^{-1}$: الكتل المولية الذرية . $\rho(H_2O)=1,0q.cm^{-3}$: الكتلة الحجمية للماء كثافة الفلزات: d(Zn)=7,11 d(Aq)=10,5

. F=96500C.mol $^{-1}$: كمية الكهرباء لـمول واحد من الإلكترونات

www.9alami.com الصفحة 1∖1

خنيفرة

ذ.محمد صبحی