سلسلة 3 التمارين في الميكانيك تطبيقات القانون الثاني لنيوتن إعداد: الحسين عدي

رمي كرة شعاعها r التمرين 1: يقطع لاعب الكرة الحديدية مسافة r أمتار بسرعة $8 {\rm km.h}^{-1}$ قبل رمي كرة شعاعها r = 4 r = 2.6r من ارتفاع الحجمية r = 2.6r من ارتفاع الحجمية r = 2.6r = r تكون زاوية r = r مع المستوى الأفقى r = r

 G_0 نختار لحظة رمي الكرة أصلا للتواريخ t=0 وأصل المعلم t=0 مطابق مع اسقاط مركز القصور t=0 للكرة على سطح الأرض عند الرمي، توجد إذن الكرة في النقطة t=0 حيث t=0 حيث t=0 للكرة على سطح الأرض عند الرمي، توجد إذن الكرة في النقطة t=0 حيث t=0 حيث t=0 حيث t=0 حيث t=0 الأسئلة t=0 مستقلة t=0 بهمل احتكاك الهواء ، الأسئلة t=0 مستقلة

1- نهتم في البداية لحركة اللاعب قبل الرمي

1- يهنم في البداية لحركة اللاعب قبل الرمي x(t) أوجد المعادلة الزمنية x(t)لحركة مركز القصور اللاعب أثناء الحركة

2-1- استنتج المدة الزمنية التي استغرقتها حركة اللاعب

2 - نهتم الآن بحركة الكرة بعد الرمي

2-1- بتطبيق القانون الثاني لنيوتن ، أوجد المعادلات الزمنية x(t) و z(t) لحركة الكرة

2-2- استنتج معادلة المسار للحركة

2-2- ما مميزات متجهة السرعة عند قمة المسار F

4-2 ما الارتفاع القصوي z_F الذي تصل اليه الكرة

. حدد هذه المسافة $_{\rm X_P}$ من أصل المعلم $_{\rm X_P}$ من أصل كرّة أخرى توجد على مسافة $_{\rm X_P}$

 $_{
m CP}$ حدد قيمة $_{
m V_{
m P}}$ سرعة الكرة لحظة اصطدامها مع الكرة المتواجدة على المسافة $_{
m CP}$.

3- حدد السرعة v_p مرة أخرى، بتطبيق مبر هنة الطاقة الحركية

التمرين 2: يريد ربان الطائرة A ،التي نعتبرها جسم نقطي ، رمي قذيفة P (نعتبرها جسم نقطي) كتلتها m على هدف ساكن متواجد على سطح الآرض ، سرعة الطائرة في الفضاء ثابتة تساوي v_0 تطلق القذيفة عند اللحظة t=0 ، لحظة مرور الطائرة من المنظمي المار من v_0 ،أصل المعلم المرتبط بالمرجع الأرضى ، نهمل تأثير الهواء.

1- في البداية ،نعتبر حركة القديفة في المعلم المرتبط بالطائرة

1-1-حدد التعبير الحرفي للمعادلات الزمنية لحركة القذيفة

1-2- استنتج طبيعة مسار القذيفة الملاحظ من الطائرة


h مدة السقوط هي $3_{\rm S}$ ، استنتج المعادلات الزمنية للطائرة عند الارتفاع $g=10{\rm m.s}^{-2}$.

2- نعتبر الآن حركة القذيفة بالنسبة للمرجع الأرضي .

2-1- حدد التعبير الحرفي للمعادلات الزمنية لحركة القذيفة في هذا المرجع.

2-2- حدد معادلة وطبيعة المسار لحركة القذيفة الملاحظة من 0.

O من الأصل 420m مسافة v_0 لكي تصطدم القذيفة بالهدف المتواجد على مسافة v_0 من الأصل v_0 عدد قيمة السرعة v_0 لكي تصطدم على بعد v_0 على بعد v_0 على بعد أي على بعد v_0 أي يمكن للقذيفة أن تصطدم بالهذف v_0 إذا كان الجواب بنعم v_0 على أي مسافة تمر القذيفة فوق الشجرة .

